Acta Mechanica Solida Sinica

, Volume 28, Issue 5, pp 510–520 | Cite as

A New Damage Mechanics Based Approach to Fatigue Life Prediction and its Engineering Application

Article

Abstract

An approach based on continuum damage mechanics to fatigue life prediction for structures is proposed. A new fatigue damage evolution equation is developed, in which the parameters are obtained in a simple way with reference to the experimental results of fatigue tests on standard specimens. With the utilization of APDL language on the ANSYS platform, a finite element implementation is presented to perform coupling operation on damage evolution of material and stress redistribution. The fatigue lives of some notched specimens and a Pitch-change-link are predicted by using the above approach. The calculated results are validated with experimental data.

Key Words

fatigue damage model damage mechanics fatigue life finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gonçalves, C.A., Araújo, J.A. and Mamiya, E.N., Multiaxial fatigue: a simple stress based criterion for hard metals. International Journal of Fatigue, 2005, 27: 177–187.CrossRefGoogle Scholar
  2. 2.
    Cristofori, A. and Tovo, R., An invariant-based approach for high-cycle fatigue calculation. Fatigue Fracture Engineering Materials Structures, 2009, 32: 310–324.CrossRefGoogle Scholar
  3. 3.
    Findley, W.N., A Theory for the Effect of Mean Stress on Fatigue of Metals under Combined Torsion and Axial Load or Bending. Engineering Materials Research Laboratory, Division of Engineering, Brown University, 1958.Google Scholar
  4. 4.
    Fatemi, A. and Socie, D.F., A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fracture Engineering Materials Structures, 1988, 11(3): 149–165.CrossRefGoogle Scholar
  5. 5.
    McDiarmid, D.L., A shear-stress based critical-plane criterion of multiaxial fatigue failure for design and life estimation. Fatigue Fracture Engineering Materials Structures, 1994, 17(12): 1475–1484.CrossRefGoogle Scholar
  6. 6.
    Szolwinski, M.P. and Farris, T.N., Mechanics of fretting fatigue crack formation. Wear, 1996, 198: 93–107.CrossRefGoogle Scholar
  7. 7.
    Papuga, J. and Ruzicka, M., Two new multiaxial criteria for high cycle fatigue computation. International Journal of Fatigue, 2008, 30: 58–66.CrossRefGoogle Scholar
  8. 8.
    Kachanov, L.M., Introduction to Continuum Damage Mechanics. Martinue Nijhoff, Dordrecht, 1986.CrossRefGoogle Scholar
  9. 9.
    Chaboche, J.L., Continuum damage mechanics-a tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 1981, 64: 233–247.CrossRefGoogle Scholar
  10. 10.
    Lemaitre, J., Mechanics of Solid Materials. Cambridge: Cambridge University Press, 1990.CrossRefGoogle Scholar
  11. 11.
    Yu, S.W. and Feng, X.Q., Damage Mechanics. Beijing: Tsinghua University Press, 1997.Google Scholar
  12. 12.
    Marmi, A.K., Habraken, A.M. and Duchene, L., Mutliaxial fatigue damage modeling at macro scale of Ti-6Al-4V alloy. International Journal of Fatigue, 2009, 31(11): 2031–2040.CrossRefGoogle Scholar
  13. 13.
    Zhang, T., McHugh, P.E. and Leen, S.B., Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue. International Journal of Fatigue, 2012, 44: 260–272.CrossRefGoogle Scholar
  14. 14.
    Zhang, M., Meng, Q.C., Hu, W.P., Shi, S.D., Hu, M.H. and Zhang, X., Damage mechanics method for fatigue life prediction of Pitch-Chang-Link. International Journal of Fatigue, 2010, 32(10): 1683–1688.CrossRefGoogle Scholar
  15. 15.
    Lemaitre, J. and Rodrigue, D., Engineering Damage Mechanics. Springer, 2005.Google Scholar
  16. 16.
    Hojjati-Talemi, R. and Abdel Wahab, M., Fretting fatigue crack initiation lifetime predictor tool: Using damage mechanics approach. Tribology International, 2013, 60: 176–186.CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Zhao, J. and Zheng, X.D., Method of damage mechanics for prediction of structure member fatigue lives. Handbook of fatigue crack propagation in metallic structures. Elsevier, 1994.Google Scholar
  18. 18.
    Zhang, X., Fracture and Damage Mechanics. Beijing: Beijing University of Aeronautics and Astronautics Press, 2006.Google Scholar
  19. 19.
    Zhang, M., Meng, Q.C., Hu, W.P. and Zhang, X., Study on anisotropic fatigue damage model of metal component. International journal of Damage Mechanics, 2012, 21: 623–646.CrossRefGoogle Scholar
  20. 20.
    Hu, W.P., Shen, Q.A., Zhang, M., Meng, Q.C. and Zhang, X., Corrosion-fatigue life prediction for 2024-T62 aluminum alloy using damage mechanics-based approach. International journal of Damage Mechanics, 2012, 21: 1245–1266CrossRefGoogle Scholar
  21. 21.
    Xiao, Y.C., Li, S. and Gao, Z., A continuum damage mechanics model for high cycle fatigue. International Journal of Fatigue, 1998, 20(7): 503–508.CrossRefGoogle Scholar
  22. 22.
    Gao, Z.T., The Fatigue Performance Experiments Design and Data Processing. Beijing: Beijing University of Aeronautics and Astronautics Press, 1999.Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2015

Authors and Affiliations

  • Fei Shen
    • 1
  • Weiping Hu
    • 1
  • Qingchun Meng
    • 1
  • Miao Zhang
    • 2
  1. 1.Institute of Solid Mechanics, School of Aeronautics Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Institute of Manned Space System, EngineeringChina Academy of Space TechnologyBeijingChina

Personalised recommendations