Advertisement

Acta Mechanica Solida Sinica

, Volume 27, Issue 2, pp 195–201 | Cite as

Nonlinear Analysis of a 5-Layer Beam-Like Piezoelectric Transformer Near Resonance

  • Hairen Wang
  • Xuan Xie
  • Yuantai Hu
  • Ji Wang
Article

Abstract

The paper examines the weakly nonlinear behavior of a 5-layer beam-like piezoelectric transformer operating near resonance, where the main structure of the device consists of properly poled and electroded flexible piezoceramic four-layers separated by a central metallic layer. Nonlinear effects of the large deflection to induce the incidental in-plane extension near resonance are considered, which is shown that on one side of the resonant frequency the output-input relation becomes nonlinear, and the other side output voltage experiences jumps.

Key Words

piezoelectric transformer resonance nonlinear vibration jump multi-valuedness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosen, C.A., Ceramic transformers and filters. In: Proceedings of the Electronic Components Symposium, 1956, 205–211.Google Scholar
  2. 2.
    Yang, J.S., Piezoelectric transformer structural modeling—a review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(6): 1154–1170.CrossRefGoogle Scholar
  3. 3.
    Nakamura, K. and Kumasaka, K., Lame-mode piezoelectric resonators and transformers using LiNbO3 crystals. In: Proceedings. IEEE Ultrasonics Symposium, 1995, 999–1002.Google Scholar
  4. 4.
    De Vries, J.W.C., Jedeloo, P. and Porath, R., Co-fired piezoelectric multilayer transformers. In: Proceedings of the Tenth IEEE International Symposium on. Applications of Ferroelectrics, 1996, 173–176.Google Scholar
  5. 5.
    Pajewski, W., Kielczynski, P. and Szalewski, M., Resonant piezoelectric ring transformer. In: Proceedings. IEEE Ultrasonics Symposium, 1998, 977–980.Google Scholar
  6. 6.
    Yang, J.S. and Zhang, W., A thickness-shear high voltage piezoelectric transformer. International Journal of Applied Electromagnetics and Mechanics, 1999, 10(2): 105–122.Google Scholar
  7. 7.
    Gausmann R. and Seemann, W., A model for a piezoelectric transformer. In: Annual Scientific Conference of the Society for Applied Mathematics and Mechanics, 2001, 189–190.Google Scholar
  8. 8.
    Yang, J.S. and Zhang, X., Extensional vibration of a nonuniform piezoceramic rod and high voltage generation. International Journal of Applied Electromagnetics and Mechanics, 2002, 16(2): 29–42.Google Scholar
  9. 9.
    Karlash, V. L., The forced electroelastic vibrations of a planar piezoelectric transformer of longitudinal-transverse type. International Applied Mechanics, 2000, 36(7): 923–930.CrossRefGoogle Scholar
  10. 10.
    Jiang, S.N. and Hu, Y.T., Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(7): 1463–1469.CrossRefGoogle Scholar
  11. 11.
    Yang, J.S. and Zhang, X., Analysis of a thickness-shear piezoelectric transformer. International Journal of Applied Electromagnetics and Mechanics, 2005, 21(2): 131–141.Google Scholar
  12. 12.
    Hsu, Y.H., Lee, C.K. and Hsiao, W.H., Electrical and mechanical fully coupled theory and experimental verification of Rosen-type piezoelectric transformers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(10): 1829–1839.CrossRefGoogle Scholar
  13. 13.
    Huang, Y.H. and Huang, W., Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(12): 2764–2771.CrossRefGoogle Scholar
  14. 14.
    Hu, Y.T., Chen, C.Y., Yang, X.H., Du, Q.G. and Cui, Z.J., Electric energy transmission between two piezoelectric transducers. Acta Mechanica Solida Sinica, 2003, 24(3): 304–312.Google Scholar
  15. 15.
    Yang, J.S., Chen, Z.G., Hu, Y.T., Jiang, S.N. and Guo, S.H., Weakly nonlinear behavior of a plate thickness-mode piezoelectric transformer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(4): 877–881.CrossRefGoogle Scholar
  16. 16.
    Hu, Y.T., Xue, H., Yang, J.S. and Jiang, Q., A Nonlinear behavior of a piezoelectric power harvester near resonance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(7): 1387–1391.CrossRefGoogle Scholar
  17. 17.
    Xue, H. and Hu, H.P., Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(9): 2092–2096.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Eisley, J.G., Nonlinear Vibration of Beams and Rectangular Plates. Zeitschrift Fur Angewandte Mathematik Und Physik, 1964, 16(2): 855–863.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Pirbodaghi, T., Fesanghary, M. and Ahmadian, M.T., Non-linear vibration analysis of laminated composite plates resting on non-linear elastic foundations. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2011, 348(2): 353–368.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Xie, J.M., Yang, J.S., Hu, H.P., Hu, Y.T. and Chen, X.D., A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder. Journal of Intelligent Material Systems and Structures, 2011, 23(2): 135–139.CrossRefGoogle Scholar
  21. 21.
    Hu, Y.T., Xue, H., Hu, T. and Hu, H.P., Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(1): 148–160.CrossRefGoogle Scholar
  22. 22.
    Hu, Y.T., Chen, C.Y., Li, G.Q., Yang, J.S. and Jiang, Q., Basic curvilinear coordinate equations of electroelastic plates under biasing fields with applications in buckling analysis. Acta Mechanica Solida Sinica, 2002, 15(3): 189–200.Google Scholar
  23. 23.
    Auld, B.A., Acoustic Fields and Waves in Solids. New York: Wiley, 1973.Google Scholar
  24. 24.
    Hu, Y.T., Yang, J.S. and Jiang, Q., A model for electroelastic plates under biasing fields with applications in buckling analysis. International Journal of Solids and Structures, 2002, 39(9): 2629–2642.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2014

Authors and Affiliations

  1. 1.Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  2. 2.Department of MechanicsHuazhong University of Science and TechnologyWuhanChina
  3. 3.Piezoelectric Device Laboratory, Department of Mechanics and Engineering Science, School of Mechanical Engineering and MechanicsNingbo UniversityNingboChina

Personalised recommendations