Acta Mechanica Solida Sinica

, Volume 27, Issue 1, pp 97–110 | Cite as

Nonlinear and Quasi-Linear Behavior of a Curved Carbon Nanotube Vibrating in an Electric Force Field; An Analytical Approach

Article

Abstract

The nonlinear vibrational model of a slightly curved single-walled carbon nanotube (SWCNT) resting on a Winkler-type elastic foundation is developed using nonlocal Euler- Bernoulli elastic theory. The SWCNT is assumed to vibrate under an external harmonic electric force field and an analytical solution is proposed to obtain the nonlinear resonant frequencies. The results show good agreement with the numerical simulation and the obtained analytical frequency is completely related to the curvature of the nanotube. Our model predicts that although the model is nonlinear in nature, the curved SWCNT could behave linearly in a certain amount of curvatures and this quasi-linear vibrational behavior of curved SWCNT is a function of aspect ratio, nonlocal parameter, and stiffness of the foundation.

Key Words

single-walled carbon nanotube curvature nonlinear vibration quasi-linear vibration multiple scales method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iijima, s., Nature, 1991, 354: 56–58.CrossRefGoogle Scholar
  2. 2.
    Ebbesen, T.W., Nanotubes, nanoparticles, and aspects of fullerene related carbons. Journal of Physics and Chemistry of Solids, 1997, 58(11): 1979–1982.CrossRefGoogle Scholar
  3. 3.
    Fang, S.C., Chang, W.J., and Wang, Y.H., Computation of chirality- and size-dependent surface Young’s moduli for single-walled carbon nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 371(5–6): 499–503.CrossRefGoogle Scholar
  4. 4.
    Terrones, M., et al., New direction in nanotube science. Materials Today, 2004, 7(10): 30–45.CrossRefGoogle Scholar
  5. 5.
    Chou, C.L.a.T.-W., Mass Detection Using Carbon Nanotube-based Nanomechanical Resonators. Applied Physics Letters, 2004, 84(25): 5246–5248.CrossRefGoogle Scholar
  6. 6.
    Ekinci, K., Electromechanical transducers at the nanoscale: actuation and sensing of motion in nanoelectro-mechanical systems (NEMS). Small Weinheim an der Bergstrasse Germany, 2005, 1(8–9): 786–797.CrossRefGoogle Scholar
  7. 7.
    Li, C. and Chou, T.W., Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Physical Review B, 2003, 68(7): 073405.CrossRefGoogle Scholar
  8. 8.
    Roukes, M., Nanoelectromechanical systems face the future. Physics World, 2001, 14: 25–31.CrossRefGoogle Scholar
  9. 9.
    Craighead, H.G., Nanoelectromechanical Systems. Science, 2000, 290(5496): 1532–1535.CrossRefGoogle Scholar
  10. 10.
    Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L. and Roukes, M.L., Zeptogram-scale nanomechanical mass sensing. Nano Letters, 2006, 6: 583–586.CrossRefGoogle Scholar
  11. 11.
    JensenK, K.Kim and Zettl A, An atomic-resolution nanomechanical mass sensor. Nat Nano, 2008, 3(9): 533–537.CrossRefGoogle Scholar
  12. 12.
    Ilic, B., et al., Enumeration of DNA Molecules Bound to a Nanomechanical Oscillator. Nano Letters, 2005, 5(5): 925–929.CrossRefGoogle Scholar
  13. 13.
    Naik, A.K., et al., Towards single-molecule nanomechanical mass spectrometry. Nat Nano, 2009, 4(7): 445–450.CrossRefGoogle Scholar
  14. 14.
    Peng, H.B., C.W.C., Aloni, S., Yuzvinsky, T.D. and Zettl, A., Ultrahigh frequency nanotube resonators. Phys. Rev. Lett, 2006, 97: 087203.CrossRefGoogle Scholar
  15. 15.
    Huang, X.M.H., et al., VHF, UHF and microwave frequency nanomechanical resonators. New Journal of Physics, 2005, 7(1): 247.CrossRefGoogle Scholar
  16. 16.
    Husain, A., et al., Nanowire-based very-high-frequency electromechanical resonator. 2003, 83(6).Google Scholar
  17. 17.
    Yakobson, B.I., et al., High strain rate fracture and C-chain unraveling in carbon nanotubes. Computational Materials Science, 1997, 8(4): 341–348.CrossRefGoogle Scholar
  18. 18.
    Won Kang, J., et al., Model schematics of carbon-nanotube-based-nanomechanical-tuner using piezoelectric strain. Physica E: Low-dimensional Systems and Nanostructures, 2010, 42(7): 1995–1999.CrossRefGoogle Scholar
  19. 19.
    Wang, C.Y., Ru, C.Q. and Mioduchowski, A., Free vibration of multiwall carbon nanotubes. 2005, 97(11).Google Scholar
  20. 20.
    Yan, Y., Zhang, L.X. and Wang, W.Q., Dynamical mode transitions of simply supported double-walled carbon nanotubes based on an elastic shell model. 2008, 103(11).Google Scholar
  21. 21.
    Murmu, T. and Pradhan, S.C., Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Computational Materials Science, 2009, 46(4): 854–859.CrossRefGoogle Scholar
  22. 22.
    Wang, L. and Ni, Q., On vibration and instability of carbon nanotubes conveying fluid. Computational Materials Science, 2008, 43(2): 399–402.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Şimşek, M., Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 50: 2112–2123.Google Scholar
  24. 24.
    Mehdipour, I., Barari, A. and Domairry, G., Application of a cantilevered SWCNT with mass at the tip as a nanomechanical sensor. Computational Materials Science, 2011, 50: 1830–1833.CrossRefGoogle Scholar
  25. 25.
    Wang, C.M., Tan, V.B.C. and Zhang, Y.Y., Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. Journal of Sound and Vibration, 2006, 294(4–5): 1060–1072.CrossRefGoogle Scholar
  26. 26.
    Murmu, T. and Pradhan, S.C., Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Physica E: Low-dimensional Systems and Nanostructures, 2009, 41(7): 1232–1239.CrossRefGoogle Scholar
  27. 27.
    Yang, J., Ke, L.L. and Kitipornchai, S., Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E: Low-dimensional Systems and Nanostructures, 2010, 42(5): 1727–1735.CrossRefGoogle Scholar
  28. 28.
    Georgantzinos, S.K. and Anifantis, N.K., Carbon nanotube-based resonant nanomechanical sensors: A computational investigation of their behavior. Physica E: Low-dimensional Systems and Nanostructures, 2010, 42(5): 1795–1801.CrossRefGoogle Scholar
  29. 29.
    Rasekh, M. and Khadem, S.E., Nonlinear vibration and stability analysis of axially loaded embedded carbon nanotubes conveying fluid. Journal of Physics D: Applied Physics, 2009, 42(13).CrossRefGoogle Scholar
  30. 30.
    Fu, Y.M., Hong, J.W. and Wang, X.Q., Analysis of nonlinear vibration for embedded carbon nanotubes. Journal of Sound and Vibration, 2006, 296(4–5): 746–756.CrossRefGoogle Scholar
  31. 31.
    Walgraef, D., On the mechanics of deformation instabilities in carbon nanotubes. The European Physical Journal - Special Topics, 2007, 146(1): 443–457.CrossRefGoogle Scholar
  32. 32.
    Xu, K.Y., X.N.G. and Ru, C.Q., Vibration of a double-walled carbon nanotube aroused by nonlinear inter-tube van der Waals forces. J. Appl. Phys, 2006, 99(6): 064303.CrossRefGoogle Scholar
  33. 33.
    Pantano, A., Boyce, M.C. and Parks, D.M., Nonlinear structural mechanics based modeling of carbon nanotube deformation. Physical Review Letters, 2003, 91(14).Google Scholar
  34. 34.
    Qian, D., et al., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, 2000, 76(20): 2868–2870.CrossRefGoogle Scholar
  35. 35.
    Joshi, A.Y., Sharma, S.C. and Harsha, S.P., Dynamic analysis of a clamped wavy single walled carbon nanotube based nanomechanical sensors. Journal of Nanotechnology in Engineering and Medicine, 2010, 1(3): 031007–7.CrossRefGoogle Scholar
  36. 36.
    Guo, R., et al., Electrohydrodynamic polymerization of 2-methoxyaniline-5-sulfonic acid. Synthetic Metals, 2000, 114(3): 267–272.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ouakad, H.M. and Younis, M.I., The dynamic behavior of MEMS arch resonators actuated electrically. International Journal of Non-Linear Mechanics, 2010, 45(7): 704–713.CrossRefGoogle Scholar
  38. 38.
    Fisher, F.T., Bradshaw, R.D. and Brinson, L.C., Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties. Composites Science and Technology, 2003, 63(11): 1689–1703.CrossRefGoogle Scholar
  39. 39.
    Mayoof, F.N. and Hawwa, M.A., Chaotic behavior of a curved carbon nanotube under harmonic excitation. Chaos, Solitons and Fractals, 2009, 42(3): 1860–1867.CrossRefGoogle Scholar
  40. 40.
    Arash, B. and Wang, Q., A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Computational Materials Science, 2012, 51(1): 303–313.CrossRefGoogle Scholar
  41. 41.
    Poncharal, P., et al., Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 1999, 283(5407): 1513–1516.CrossRefGoogle Scholar
  42. 42.
    Soltani, P., et al., An efficient continuum model for CNTs-based bio-sensors. The European Physical Journal Applied Physics, 1(1).CrossRefGoogle Scholar
  43. 43.
    Eringen, A.C., Theories of nonlocal plasticity. International Journal of Engineering Science, 1983, 21(7): 741–751.CrossRefGoogle Scholar
  44. 44.
    Sazonova.V, A Tunable Carbon Nanotube Resonator. PhD Dissertation, 2006.Google Scholar
  45. 45.
    Nayfeh, A., Introduction to Perturbation Techniques. Wiley, 1993.Google Scholar
  46. 46.
    Nayfeh, A. and Mook, D., Nonlinear Oscillations. Wiley, 1995.Google Scholar
  47. 47.
    Gupta, S.S., Bosco, F.G. and Batra, R.C., Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Computational Materials Science, 2010, 47(4): 1049–1059.CrossRefGoogle Scholar
  48. 48.
    Wang, X., et al., Effective bending modulus of carbon nanotubes with rippling deformation. International Journal of Solids and Structures, 2004, 41(22–23): 6429–6439.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2014

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Semnan BranchIslamic Azad UniversitySemnanIran
  2. 2.Young Researchers Club, Semnan BranchIslamic Azad UniversitySemnanIran

Personalised recommendations