Acta Mechanica Solida Sinica

, Volume 27, Issue 1, pp 65–72 | Cite as

Effect of Magnetic Nanoparticles on the Mechanical Properties of Type-II Superconductors

  • Chenguang Huang
  • Huadong Yong
  • Youhe Zhou


In this paper, the effect of magnetic nanoparticles on the mechanical properties of a type-II superconductor is investigated both theoretically and numerically. Magnetic part of the pinning force associated with the interaction between a finite-size spheroidal magnetic inclusion and an Abrikosov vortex is calculated in the London approximation. It is found that the size and shape of magnetic nanoparticles result in different enhancements of vortex pinning in large-k type-II superconductors. Meanwhile, the screening current induced by a magnetic spheroid suffer the action of Lorentz force, which will lead to prestress in the superconductor, so further numerical calculations are needed to explore the interaction between the spheroidal magnetic particle and superconductor. The distribution of displacement, stress and strain in the superconductor are finally obtained. It is shown that different sizes and shapes of nanoparticles also can change the distributions of these quantities.

Key Words

magnetic nanoparticles spheroidal inclusion pinning force stress distribution type-II superconductor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milošević, M.V. and Peeters, F.M., Vortex matter in the presence of magnetic pinning centra. Journal of low temperature physics, 2003, 130(3–4): 311–320.CrossRefGoogle Scholar
  2. 2.
    Campbell, A.M. and Evetts, J.E., Flux vortices and transport currents in type II superconductors. Advances in Physics, 1972, 21(90): 199–428.CrossRefGoogle Scholar
  3. 3.
    Blatter, G., Feigel’Man, M.V., Geshkenbein, V.B., Larkin, A.I. and Vinokur, V.M., Vortices in high-temperature superconductors. Reviews of Modern Physics, 1994, 66(4): 1125–1388.CrossRefGoogle Scholar
  4. 4.
    Alden, T.H. and Livingston, J.D., Ferromagnetic particles in a type-II superconductor. Journal of Applied Physics, 1966, 37(9): 3551–3556.CrossRefGoogle Scholar
  5. 5.
    Koch, C.C. and Love, G.R., Superconductivity in niobium containing ferromagnetic gadolinium or paramagnetic yttrium dispersions. Journal of Applied Physics, 1969, 40(9): 3582–3587.CrossRefGoogle Scholar
  6. 6.
    Fasano, Y., Herbsommer, J.A., De La Cruz, F., Pardo, F., Gammel, P.L., Bucher, E. and Bishop, D.J., Observation of periodic vortex pinning induced by Bitter decoration. Physical Review B, 1999, 60(22): R15047–R15050.CrossRefGoogle Scholar
  7. 7.
    Martín, J.I., Vélez, M., Nogués, J. and Schuller, I.K., Flux pinning in a superconductor by an array of sub-micrometer magnetic dots. Physical Review Letters, 1997, 79(10): 1929–1932.CrossRefGoogle Scholar
  8. 8.
    Jaccard, Y., Martín, J.I., Cyrille, M.C., Vélez, M., Vicent, J.L. and Schuller, I.K., Magnetic pinning of the vortex lattice by arrays of submicrometric dots. Physical Review B, 1998, 58(13): 8232–8235.CrossRefGoogle Scholar
  9. 9.
    Van Bael, M.J., Van Look, L., Lange, M., Bekaert, J., Bending, S.J., Grigorenko, A.N., Temst, K., Moshchalkov, V.V. and Bruynseraede, Y., Ferromagnetic pinning arrays. Physica C: Superconductivity, 2002, 369(1–4): 97–105.CrossRefGoogle Scholar
  10. 10.
    Marmorkos, I.K., Matulis, A. and Peeters, F.M., Vortex structure around a magnetic dot in planar superconductors. Physical Review B, 1996, 53(5): 2677–2685.CrossRefGoogle Scholar
  11. 11.
    Kayali, M.A., Theory of pinning in a superconducting thin film pierced by a ferromagnetic columnar defect. Physical Review B, 2005, 71(2): 024515.CrossRefGoogle Scholar
  12. 12.
    Blamire, M.G, Dinner, R.B., Wimbush, S.C. and MacManus-Driscoll, J.L., Critical current enhancement by Lorentz force reduction in superconductor-ferromagnet nanocomposites. Superconductor Science and Technology, 2009, 22(2): 025017.CrossRefGoogle Scholar
  13. 13.
    Snezhko, A., Prozorov, T. and Prozorov, R., Magnetic nanoparticles as efficient bulk pinning centers in type-II superconductors. Physical Review B, 2005, 71(2): 024527.CrossRefGoogle Scholar
  14. 14.
    Rizzo, N.D., Wang, J.Q., Prober, D.E., Motowidlo, L.R. and Zeitlin, B.A., Ferromagnetic artificial pinning centers in superconducting NbTi wires. Applied Physics Letters, 1996, 69(15): 2285–2287.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2014

Authors and Affiliations

  1. 1.Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of ChinaLanzhou UniversityLanzhouChina
  2. 2.Department of Mechanics and Engineering Sciences, School of Civil Engineering and MechanicsLanzhou UniversityLanzhouChina

Personalised recommendations