Advertisement

Acta Mechanica Solida Sinica

, Volume 27, Issue 1, pp 28–40 | Cite as

Theoretical and Experimental Studies of Stress Distribution in Wedge-Shaped Granular Heaps

  • Thirapong Pipatpongsa
  • Tadaki Matsushita
  • Maho Tanaka
  • Shinichi Kanazawa
  • Katsuyuki Kawai
Article

Abstract

The present work explains the statics of self-weight transmission restricted to a long prismatic heap inclined at an angle of repose and symmetrically formed on a rigid base. The closure of polarized principal axes with the mobilized state of stress along the slope surface is employed by imposing the orientation of principal stresses on the equilibrium equations. Comparisons were made with calculations based on the finite element method using an elastic model. Moreover, experiments on sand heaps deposited on a rectangular rigid base were conducted to validate the theoretical study. The measured pressure profile generally agreed well with theoretical results.

Key Words

granular materials sand continuum medium analytical method finite element method experimental techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watson, A., The perplexing puzzle posed by a pile of apples. New Scientist, 1991, 132: 19.Google Scholar
  2. 2.
    Watson, A., Searching for the sand-pile pressure dip. Science, 1996, 273: 579–580.CrossRefGoogle Scholar
  3. 3.
    Wittmer, J.P., Claudin, P., Cates, M.E. and Bouchaud, J.P., An explanation for the central stress minimum in sand piles. Nature, 1996, 382: 336–338.CrossRefGoogle Scholar
  4. 4.
    Hummel, F.H. and Finnan, E.J., The distribution of pressure on surfaces supporting a mass of granular material. Minutes of the Proceedings of the Institution of Civil Engineers, 1921, 212: 369–392.CrossRefGoogle Scholar
  5. 5.
    Trollope, D.H., The systematic arching theory applied to the stability analysis of embankments. In: Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, 1957, 2: 382–388.Google Scholar
  6. 6.
    Bouchaud, J.P., Cates, M.E. and Claudin, P., Stress-distribution in granular media and nonlinear-wave equation. J. Phys. I, 1995, 5: 639–656.Google Scholar
  7. 7.
    Wittmer, J.P., Cates, M.E. and Claudin, P., Stress propagation and arching in static sandpiles. J. Phys. I, 1997, 7: 39–80.Google Scholar
  8. 8.
    Cantelaube, F. and Goddard, J.D., Elastoplastic arching in 2D granular heaps, powders and grains 97. In: Proceedings of the Third International Conference on Powders & Grains, 1997: 231–234.Google Scholar
  9. 9.
    Didwania, A.K., Cantelaube, F. and Goddard, J.D., Static multiplicity of stress states in granular heaps. Proceedings of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences, 2000, 456: 2569–2588.CrossRefGoogle Scholar
  10. 10.
    Trollope, D.H., The stability of Wedges of Granular Materials. Ph.D. Thesis, Ph.D., 1956.Google Scholar
  11. 11.
    Jotaki, T., On the bottom pressure distribution of the bulk materials piled with the angle of repose. J. Soc. Powder Technol., Japan, 1979, 16: 184–191.CrossRefGoogle Scholar
  12. 12.
    Šmíd, J. and Novosad, J., Pressure distribution under heaped bulk solids, Particle Technology. In: Proceedings of the 1981 Powtech Conference, 1981: 1–12.Google Scholar
  13. 13.
    Vanel, L., Howell, D., Clark, D., Behringer, R.P. and Clement, E., Memories in sand: Experimental tests of construction history on stress distributions under sandpiles. Physical Review E, 1999, 60: R5040–R5043.CrossRefGoogle Scholar
  14. 14.
    Wiesner, T.J., Failure stresses beneath granular embankments. Development in Theoretical Geomechanics, 2000: 33–41.Google Scholar
  15. 15.
    Geng, J., Longhi, E., Behringer, R.P. and Howell, D.W., Memory in two-dimensional heap experiments. Physical Review E, 2001, 64: 060301.CrossRefGoogle Scholar
  16. 16.
    Savage, S.B., Problems in the statics and dynamics of granular materials. In: Proceedings of the Third International Conference on Powders & Grains (Powders and Grains 97), 1997: 185–194.Google Scholar
  17. 17.
    Pipatpongsa, T., Heng, S., Iizuka, A. and Ohta, H., Statics of loose triangular embankment under Nadai’s sand hill analogy. Journal of the Mechanics and Physics of Solids, 2010, 58(10): 1506–1523.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nadai, A., Theory of Flow and Fracture of Solids. Vol. II, 1963: 697.Google Scholar
  19. 19.
    Marais, G.v.R., Stresses in wedges of cohesionless materials formed by free discharge at the apex. Transactions of the ASME. Ser. B, Journal of Engineering for Industry, 1969, 91: 345–352.CrossRefGoogle Scholar
  20. 20.
    Sokolovskii, V.V., Statics of Granular Materials. Vol.11, 1965: 219–262.Google Scholar
  21. 21.
    Cates, M.E., Wittmer, J.P., Bouchaud, J.P. and Claudin, P., Development of stresses in cohesionless poured sand. Philos. Trans. R. Soc. Lond. Ser. A—Math. Phys. Eng. Sci., 1998, 356: 2535–2560.CrossRefGoogle Scholar
  22. 22.
    Michalowski, R.L. and Park, N., Admissible stress fields and arching in piles of sand. Geotechnique, 2004, 54: 529–538.CrossRefGoogle Scholar
  23. 23.
    Cornforth, D.H., Prediction of drained strength of sands from relative density measurements. In: Selig E, Ladd R, editors. ASTM Special Technical Publication 523: Evaluation of Relative Density and its Role in Geotechnical Projects Involving Cohesionless Soils. American Society for Testing and Materials, 1973: 281–303.Google Scholar
  24. 24.
    Pipatpongsa, T., Iizuka, A. and Ohta, H., Analyses of pressure distribution using arching criteria in 2D sand heaps. Theoretical and Applied Mechanics, 2010, 58: 41–48.Google Scholar
  25. 25.
    Tenenbaum, M. and Pollard, H., Ordinary Differential Equations. Dover Publications, New York, 1985.zbMATHGoogle Scholar
  26. 26.
    Silverman, K., Approximate stress functions for triangular wedges. ASME Journal of Applied Mechanics, 1958, 22: 123.zbMATHGoogle Scholar
  27. 27.
    Saint-Venant, B.D., Mémoire sur la torsion des prismes, avec des considérations sur leur flexion, ainsi que sur l’équilibre intérieur des solides élastiques en général, et des formules pratiques pour le calcul de leur résistance à divers efforts s’exerçant simultanément, Mémoires présentés par divers savans à l’Académie royale des sciences de l’Institut de France, 1855, T14: 233–560.Google Scholar
  28. 28.
    Cox, G.M. and Hill, J.M., Some exact velocity profiles for granular flow in converging hoppers. Zeitschrift Fur Angewandte Mathematik Und Physik, 2005, 56: 92–106.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Iizuka, A. and Ohta, H., A determination procedure of input parameters in elasto-viscoplastic finite element analysis. Soils and Foundations, 1987, 27: 71–87.CrossRefGoogle Scholar
  30. 30.
    Savage, S.B., Modeling and granular material boundary values problems. Physics of Dry Granular Media, 1989, 350: 25–95.MathSciNetGoogle Scholar
  31. 31.
    Michalowski, R.L., Coefficient of earth pressure at rest. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131: 1429–1433.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2014

Authors and Affiliations

  • Thirapong Pipatpongsa
    • 1
  • Tadaki Matsushita
    • 2
  • Maho Tanaka
    • 3
  • Shinichi Kanazawa
    • 4
  • Katsuyuki Kawai
    • 5
  1. 1.Global Scientific Information and Computing CenterTokyo Institute of TechnologyTokyoJapan
  2. 2.Department of International Development EngineeringTokyo Institute of TechnologyTokyoJapan
  3. 3.Maeda CorporationTokyoJapan
  4. 4.Nishimatsu Construction Co., Ltd.TokyoJapan
  5. 5.Research Center for Urban Safety and SecurityKobe UniversityHyogoJapan

Personalised recommendations