Advertisement

Acta Mechanica Solida Sinica

, Volume 25, Issue 5, pp 459–466 | Cite as

A Finite Element Method for Dielectric Elastomer Transducers

  • Shaoxing Qu
  • Zhigang Suo
Article

Abstract

We present a finite element method for dielectric elastomer (DE) transducers based on the nonlinear field theory of DE. The method is implemented in the commercial finite element software ABAQUS, which provides a large library functions to describe finite elasticity. This method can be used to solve electromechanical coupling problems of DE transducers with complex configurations and under inhomogeneous deformation.

Key words

finite element method dielectric elastomer electromechanical coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Suo, Z., Mechanics of stretchable electronics and soft machines. MRS Bulletin, 2012, 37: 218–225.CrossRefGoogle Scholar
  2. [2]
    Pelrine, R., Kornbluh, R., Pei, Q. and Joseph, J., High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287(5454): 836–839.CrossRefGoogle Scholar
  3. [3]
    Pelrine, R., Kornbluh, R., Joseph, J., Heydt, R., Pei, Q. and Chiba, S., High-field deformation of elastomeric dielectrics for actuators. Materials Science and Engineering: C, 2000, 11(2): 89–100.CrossRefGoogle Scholar
  4. [4]
    Wissler, M. and Mazza, E., Electromechanical coupling in dielectric elastomer actuators. Sensors and Actuators a-Physical, 2007, 138: 384–393.CrossRefGoogle Scholar
  5. [5]
    Koh, S.J.A., Zhao, X. and Suo, Z., Maximal energy that can be converted by a dielectric elastomer generator. Applied Physics Letters, 2009, 94(26): 262902.CrossRefGoogle Scholar
  6. [6]
    Beck, M., Fiolka, R. and Stemmer, A., Variable phase retarder made of a dielectric elastomer actuator. Optics Letters, 2009, 34: 803–805.CrossRefGoogle Scholar
  7. [7]
    Kofod, G., McCarthy, D.N., Krissler, J., Lang, G. and Jordan, G., Electroelastic optical fiber positioning with submicrometer accuracy: Model and experiment. Applied Physics Letters, 2009, 94: 202901.CrossRefGoogle Scholar
  8. [8]
    Carpi, F., Frediani, G. and De Rossi, D., Hydrostatically coupled dielectric elastomer actuators. IEEE-ASME Transactions on Mechatronics, 2010, 15: 308–315.CrossRefGoogle Scholar
  9. [9]
    Dorfmann, A. and Ogden, R.W., Nonlinear electroelasticity. Acta Mechanica, 2005, 174(3): 167–183.CrossRefGoogle Scholar
  10. [10]
    Goulbourne, N., Mockensturm, E. and Frecker, M., A nonlinear model for dielectric elastomer membranes. Journal of Applied Mechanics, 2005, 72(6): 899–906.CrossRefGoogle Scholar
  11. [11]
    Suo, Z., Zhao, X. and Greene, W.H., A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 467–486.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Trimarco, C., On the Lagrangian electrostatics of elastic solids. Acta Mechanica, 2009, 204(3): 193–201.CrossRefGoogle Scholar
  13. [13]
    Zhao, X.H., Koh, S.J.A. and Suo, Z.G., Nonequilibrium thermodynamics of dielectric elastomers. International Journal of Applied Mechanics, 2011, 3(2): 203–217.CrossRefGoogle Scholar
  14. [14]
    Suo, Z., Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 2010, 23(6): 549–578.CrossRefGoogle Scholar
  15. [15]
    Kornbluh, R.D., Pelrine, R., Prahlad, H., Wong-Foy, A., McCoy, B., Kim, S., Eckerle, J. and Low, T., Dielectric elastomers: Stretching the capabilities of energy harvesting. MRS Bulletin, 2012, 37: 246–253.CrossRefGoogle Scholar
  16. [16]
    Wissler, D. and Mazza, E., Modeling of a pre-strained circular actuator made of dielectric elastomers. Sesors and Actuators, 2005, A120: 184–192.CrossRefGoogle Scholar
  17. [17]
    Plante, J.S. and Dubowsky, S., Large-scale failure modes of dielectric elastomer actuators. International Journal of Solids Structures, 2006, 43: 7727–7751.CrossRefGoogle Scholar
  18. [18]
    Zhao, X., Hong, W. and Suo, Z., Electromechanical hysteresis and coexistent states in dielectric elastomers. Physical Review B, 2007, 76: 134113.CrossRefGoogle Scholar
  19. [19]
    Moscardo, M., Zhao, X., Suo, Z. and Lapusta, Y., On designing dielectric elastomer actuators. Journal of Applied Physics, 2008, 104(9): 093503.CrossRefGoogle Scholar
  20. [20]
    Zhou, J., Hong, W., Zhao, X., Zhang, Z. and Suo, Z., Propagation of instability in dielectric elastomers. International Journal of Solids and Structures, 2008, 45: 3739–3750.CrossRefGoogle Scholar
  21. [21]
    Zhao, X. and Suo, Z., Theory of dielectric elastomers capable of giant deformation of actuation. Physical Review Letters, 2010, 104(17): 178302.CrossRefGoogle Scholar
  22. [22]
    Koh, S.J.A., Keplinger, C., Li, T., Bauer, S. and Suo, Z., Dielectric elastomer generators: how much energy can be converted? IEEE-ASME Transactions on Mechatronics, 2011, 16: 33–41.CrossRefGoogle Scholar
  23. [23]
    Zhu, J., Li, T., Cai, S. and Suo, Z., Snap-through expansion of a gas bubble in an elastomer. Journal of Adhesion, 2011, 87: 466–481.CrossRefGoogle Scholar
  24. [24]
    Zhao, X. and Suo, Z., Method to analyze programmable deformation of dielectric elastomer layers. Applied Physics Letters, 2008, 93: 251902.CrossRefGoogle Scholar
  25. [25]
    Ogden, R.W., Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1972, 326: 565–584.CrossRefGoogle Scholar
  26. [26]
    Arruda, E.M. and Boyce, M.C., A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993, 41: 389–412.CrossRefGoogle Scholar
  27. [27]
    Gent, A.N., A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996, 69: 59–61.CrossRefGoogle Scholar
  28. [28]
    Fox, J.W. and Goulbourne, N.C., On the dynamic electromechanical loading of dielectric elastomer membranes. Journal of the Mechanics and Physics of Solids, 2008, 56: 2669–2686.CrossRefGoogle Scholar
  29. [29]
    Zhu, J., Cai, S. and Suo, Z., Nonlinear oscillation of a dielectric elastomer balloon. Polymer International, 2010, 59: 378–383.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2012

Authors and Affiliations

  1. 1.Department of Engineering MechanicsZhejiang UniversityHangzhouChina
  2. 2.Soft Matter Research Center (SMRC)Zhejiang UniversityHangzhouChina
  3. 3.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations