Acta Mechanica Solida Sinica

, Volume 25, Issue 3, pp 221–243 | Cite as

Strength, Plasticity, Interlayer Interactions and Phase Transition of Low-Dimensional Nanomaterials Under Multiple Fields

  • Wanlin Guo
  • Yufeng Guo
  • Zhuhua Zhang
  • Lifeng Wang


Atoms are hold together to form different materials and devices through short range interactions such as chemical bonds and long range interactions such as the van der Waals force and electromagnetic interactions. Quantum mechanics is powerful to describe the short range interactions of materials at the nanometer scale, while molecular mechanics and dynamics based on empirical potentials are able to simulate material behaviors at much large scales, but weak in handling of processes including charge transfer and redistributions, such as mechanical-electric coupling of functional nanomaterials, plastic deformation, fracture and phase transition of nanomaterials. These issues are also challenging to quantum mechanics which needs to be extended to van der Waals distance and larger spatial as well as temporal scales. Here, we make brief review and discussions on such kind of mechanical behaviors of some important functional nanomaterials and nanostructures, to probe the frontier of nanomechanics and the trend to multiscale physical mechanics.

Key words

low-dimensional nanomaterials nano device physical mechanics multiple field coupling multiscale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lu, J.P., Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters, 1997, 79: 1297–1300.CrossRefGoogle Scholar
  2. [2]
    Yakobson, B.I., Mechanical relaxation and ‘intramolecular plasticity’ in carbon nanotubes. Applied Physics Letters, 1998, 72: 918.CrossRefGoogle Scholar
  3. [3]
    Hernández, E., Goze, C., Bernier, P. and Rubio, A., Elastic properties of C and BxCyNz composite nanotubes. Physical Review Letters, 1998, 80: 4502–4505.CrossRefGoogle Scholar
  4. [4]
    Kelly, B.T., Physics of Graphite. London: Applied Science, 1981.Google Scholar
  5. [5]
    Zhao, Q., Nardelli, M.B. and Bernholc, J., Ultimate strength of carbon nanotubes: A theoretical study. Physical Review B, 2002, 65: 144105.CrossRefGoogle Scholar
  6. [6]
    Zhang, P., Lammert, P.E. and Crespi, V.H., Plastic deformations of carbon nanotubes. Physical Review Letters, 1998, 81: 5346–5349.CrossRefGoogle Scholar
  7. [7]
    Walters, D.A., Ericson, L.M., Casavant, M.J., Liu, J., Colbert, D.T., Smith, K.A. and Smalley, R.E., Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters, 1999, 74: 3803.CrossRefGoogle Scholar
  8. [8]
    Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters, 2000, 84: 5552–5555.CrossRefGoogle Scholar
  9. [9]
    Nardelli, M.B., Yakobson, B.I. and Bernholc, J., Mechanism of strain release in carbon nanotubes. Physical Review B, 1998, 57: R4277–R4280.CrossRefGoogle Scholar
  10. [10]
    Nardelli, M.B., Yakobson, B.I. and Bernholc, J., Brittle and ductile behavior in carbon nanotubes. Physical Review Letters, 1998, 81: 4656–4659.CrossRefGoogle Scholar
  11. [11]
    Huang, J.Y., Chen, S., Wang, Z.Q., Kempa, K., Wang, Y.M., Jo, S.H., Chen, G., Dresselhaus, M.S. and Ren, Z.F., Superplastic carbon nanotubes. Nature, 2006, 439: 281.CrossRefGoogle Scholar
  12. [12]
    Huang, J.Y., Chen, S., Ren, Z.F., Wang, Z.Q., Kempa, K., Naughton, M.J., Chen, G. and Dresselhaus, M.S., Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures. Physical Review Letters, 2007, 98: 185501.CrossRefGoogle Scholar
  13. [13]
    Huang, J.Y., Chen, S., Ren, Z.F., Wang, Z.Q., Wang, D.Z., Vaziri, M., Suo, Z., Chen, G. and Dresselhaus, M.S., Kink formation and motion in carbon nanotubes at high temperatures. Physical Review Letters, 2006, 97: 075501.CrossRefGoogle Scholar
  14. [14]
    Ding, F., Jiao, K., Wu, M. and Yakobson, B.I., Pseudoclimb and dislocation dynamics in superplastic nanotubes. Physical Review Letters, 2007, 98: 075503.CrossRefGoogle Scholar
  15. [15]
    Tang, C., Guo, W.L. and Chen, C.F., Mechanism for superelongation of carbon nanotubes at high temperatures. Physical Review Letters, 2008, 100: 175501.CrossRefGoogle Scholar
  16. [16]
    Lee, Y.H., Kim, S.G. and Tomfinek, D., Field-induced unraveling of carbon nanotubes. Chemical Physics Letters, 1997, 265: 667–672.CrossRefGoogle Scholar
  17. [17]
    Keblinski, P., Nayak, S.K., Zapol, P. and Ajayan, P.M., Charge distribution and stability of charged carbon nanotubes, Physical Review Letters, 2002, 89: 255503.CrossRefGoogle Scholar
  18. [18]
    Luo, J. and Wu, J.L., Effect of charge on the stability of single-walled carbon nanotubes. Science in China Series G, 2004, 47: 685–693.CrossRefGoogle Scholar
  19. [19]
    Li, C.Y. and Chou, T.W., Theoretical studies on the charge-induced failure of single-walled carbon nanotubes. Carbon, 2007, 45: 922–930.CrossRefGoogle Scholar
  20. [20]
    Guo, Y.F. and Guo, W.L., Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field. Journal of Physics D: Applied Physics, 2003, 36: 805–811.CrossRefGoogle Scholar
  21. [21]
    Collins, P.G., Arnold, M.S. and Avouris, P.H., Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 2001, 292: 706–709.CrossRefGoogle Scholar
  22. [22]
    Bonard, J.M., Klinke, C., Dean, K.A. and Coll, B.F., Degradation and failure of carbon nanotube field emitters. Physical Review B, 2003, 67: 115406.CrossRefGoogle Scholar
  23. [23]
    de Pablo, P.J., Howell, S., Crittenden, S., Walsh, B., Graugnard, E. and Reifenberger, R., Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes. Applied Physics Letters, 1999, 75: 3941.CrossRefGoogle Scholar
  24. [24]
    Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.L. and Lieber, C.M., Carbon nanotube-based nonvolatile random access memory for molecular computing. Science, 2000, 289: 94–97.CrossRefGoogle Scholar
  25. [25]
    Zhou, G., Duan, W.H. and Gu, B.L., Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes. Physical Review Letters, 2001, 87: 095504.CrossRefGoogle Scholar
  26. [26]
    Hansson, A., Paulsson, M. and Stafstroml, S., Effect of bending and vacancies on the conductance of carbon nanotubes. Physical Review B, 2000, 62: 7639–7644.CrossRefGoogle Scholar
  27. [27]
    Buongiorno, N.M. and Bernhole, J., Mechanical deformations and coherent transport in carbon nanotubes. Physical Review B, 1999, 60: 16338–16341.CrossRefGoogle Scholar
  28. [28]
    Tekleab, D., Carroll, D.L., Samsonidze, G.G. and Yakobson, B.I., Strain-induced electronic property heterogeneity of a carbon nanotube. Physical Review B, 2001, 64: 035419.CrossRefGoogle Scholar
  29. [29]
    Guo, W.L. and Guo, Y.F., Giant axial electrostrictive deformation in carbon nanotubes. Physical Review Letters, 2003, 91: 115501.CrossRefGoogle Scholar
  30. [30](a)
    Guo, W.L. and Guo, Y.F., The coupled effects of mechanical deformation and electronic properties in carbon nanotubes. Acta Mechanica Sinica, 2004, 20: 192–198.CrossRefGoogle Scholar
  31. (b).
    Tang, C., Guo, W.L. and Guo, Y.F., Electrostrictive effect on electronic structures of carbon nanotubes. Applied Physics Letters, 2006, 88: 243112.CrossRefGoogle Scholar
  32. [31]
    Wang, Z.L., Gao, R.P., Ponchara, P., de Heer, W.A., Dai, Z.R. and Pan, Z.W., Mechanical and electrostatic properties of carbon nanotubes and nanowires. Materials Science and Engineering: C, 2001, 16: 3–10.CrossRefGoogle Scholar
  33. [32]
    Lee, C., Wei, X., Kysar, J.W. and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385–388.CrossRefGoogle Scholar
  34. [33]
    Frank, W., Tanenbaum, D.M., Van Der Zande, A.M. and Mceuen, P.L., Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, 2007, 25: 2558–2561.CrossRefGoogle Scholar
  35. [34]
    Behfar, K., Seifi, P., Naghdabadi, R. and Ghanbari, J., An analytical approach to determination of bending modulus of a multi-layered graphene sheet. Thin Solid Films, 2006, 496: 475–480.CrossRefGoogle Scholar
  36. [35]
    Lu, Q., Arroyo, M. and Huang, R., Elastic bending modulus of monolayer graphene. Journal of Physics D: Applied Physics, 2009, 42: 102002.CrossRefGoogle Scholar
  37. [36]
    Gao, Y. and Hao, P., Mechanical properties of monolayer graphene under tensile and compressive loading. Physica E, 2009, 41: 1561–1566.CrossRefGoogle Scholar
  38. [37]
    Bu, H., Chen, Y., Zou, M., Yia, H., Bi, K. and Ni, Z., Atomistic simulations of mechanical properties of graphene nanoribbons. Physics Letters A, 2009, 373: 3359–3362.CrossRefGoogle Scholar
  39. [38]
    Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K. and Chen, Y., Anisotropic mechanical properties of graphene sheets from molecular dynamics. Physica B, 2010, 405: 1301–1306.CrossRefGoogle Scholar
  40. [39]
    Scarpa, F., Adhikari, S. and Srikantha, A., Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology, 2009, 20: 065709.CrossRefGoogle Scholar
  41. [40]
    Xiao, J.R., Staniszewski, J. and Gillespie Jr, J.W., Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Composite Structures, 2009, 88: 602–609.CrossRefGoogle Scholar
  42. [41]
    Xiao, J.R., Staniszewski, J. and Gillespie Jr, J.W., Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone-Wales defects. Materials Science and Engineering: A, 2010, 527: 715–723.CrossRefGoogle Scholar
  43. [42]
    Zhang, X., Jiao, K., Sharma, P. and Yakobson, B.I., An atomistic and non-classical continuum field theoretic perspective of elastic interactions between defects (force dipoles) of various symmetries and application to graphene. Journal of the Mechanics and Physics of Solids, 2006, 54: 2304–2329.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [43]
    Grantab, R., Shenoy, V.B. and Ruoff, R.S., Anomalous strength characteristics of tilt grain boundaries in graphene. Science, 2010, 330: 946–948.CrossRefGoogle Scholar
  45. [44]
    Li, Q., Ma, Y., Oganov, A.R., Wang, H., Wang, H., Xu, Y., Cui, T., Mao, H.K. and Zou, G., Superhard monoclinic polymorph of carbon. Physical Review Letters, 2009, 102: 175506.CrossRefGoogle Scholar
  46. [45]
    Wang, J.T., Chen, C. and Kawazoe, Y., Low-Temperature Phase transformation from graphite to sp3 orthorhombic carbon. Physical Review Letters, 2011, 106: 075501.CrossRefGoogle Scholar
  47. [46]
    Umemoto, K., Wentzcovitch, R.M., Saito, S. and Miyake, T., Body-centered tetragonal c4:aviable sp3 carbon allotrope. Physical Review Letters, 2010, 104: 125504.CrossRefGoogle Scholar
  48. [47]
    Sheng, X.L., Yan, Q.B., Ye, F., Zheng, Q.R. and Su, G., T-carbon: a novel carbon allotrope. Physical Review Letters, 2011, 106: 155703CrossRefGoogle Scholar
  49. [48]
    Aust, R.B. and Drickamer, H.G., Carbon: a new crystalline phase. Science, 1963, 140: 817–819.CrossRefGoogle Scholar
  50. [49]
    Clarke, R. and Uher, C., High pressure properties of graphite and its intercalation compounds. Advanced Physics, 1984, 33(5): 469–566.CrossRefGoogle Scholar
  51. [50]
    Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. and Sumiya, H., Materials: Ultrahard polycrystalline diamond from graphite. Nature, 2003, 421: 599–600.CrossRefGoogle Scholar
  52. [51]
    Scandolo, S., Bernasconi, M., Chiarotti, G.L., Focher, P. and Tosatti, E., Pressure-induced transformation path of graphite to diamond. Physical Review Letters, 1995, 74: 4015–4018.CrossRefGoogle Scholar
  53. [52]
    Utsumi, W. and Yagi, T., Phase transformations in carbon fullerenes at high shock pressures. Science, 1991, 252: 1489–1491.Google Scholar
  54. [53]
    Hirai, H., Kondo, K., Yoshizawa, N. and Shiraishi, M., Amorphous diamond from C60 fullerene. Applied Physics Letters, 1994, 64: 1797–1799.CrossRefGoogle Scholar
  55. [54]
    Kozlov, M.E., Hirabayashi, M., Nozaki, K., Tokumoto, M. and Ihara, H., Transformation of C fullerenes into a superhard form of carbon at moderate pressure. Applied Physics Letters, 1995, 66: 1199–1202.CrossRefGoogle Scholar
  56. [55]
    Hirai, H., Kondo, K., Kim, M., Koinuma, H., Kurashima, K. and Bando, Y., Transparent nanocrystalline diamond ceramics fabricated from C fullerene by shock compression. Applied Physics Letters, 1997, 71: 3016–3019.CrossRefGoogle Scholar
  57. [56]
    Lyapin, A.G., Brazhkin, V.V., Gromnitskaya, E.L., Popova, S.V., Stal’gorova, O.V., Voloshin, R.N., Bayliss, S.C. and Sapelkin, A.V., Hardening of fullerite C during temperature-induced polymerization and amorphization under pressure. Applied Physics Letters, 2000, 76: 712–715.CrossRefGoogle Scholar
  58. [57]
    Brazhkin, V.V., Lyapin, A.G., Popova, S.V., Klyuev, Y.A. and Naletov, A.M., Mechanical properties of the 3D polymerized, sp-sp amorphous, and diamond-plus-graphite nanocomposite carbon phases prepared from C under high pressure. Journal of Applied Physics, 1998, 84: 219–227.CrossRefGoogle Scholar
  59. [58]
    Lyapin, A.G., Mukhamadiarov, V.V., Brazhkin, V.V., Popova, S.V., Kondrin, M.V., Sadykov, R.A., Tat’yanin, E.V., Bayliss, S.C. and Sapelkin, A.V., Structural and elastic anisotropy of carbon phases prepared from fullerite C. Applied Physics Letters, 2003, 83(19): 3903–3906.CrossRefGoogle Scholar
  60. [59]
    Patterson, J.R., Catledge, S.A. and Vohra, Y.K., Nanoindentation and X-ray diffraction studies of pressure-induced amorphization in C-70 fullerene. Applied Physics Letters, 2000, 77(6): 851–853.CrossRefGoogle Scholar
  61. [60]
    Patterson, J.R., Catledge, S.A., Vohra, Y.K., Akella, J. and Weir, S.T., Electrical and mechanical properties of c70 fullerene and graphite under high pressures studied using designer diamond anvils. Physical Review Letters, 2000, 85: 5364–5367.CrossRefGoogle Scholar
  62. [61]
    Patterson, R., Kudryavtsev, A. and Vohra, Y.K., X-ray diffraction and nanoindentation studies of nanocrystalline graphite at high pressures. Applied Physics Letters, 2002, 81(11): 2073–2076.CrossRefGoogle Scholar
  63. [62]
    Mao, W.L., Mao, H., Eng, P.J., Trainor, T.P., Newville, M., Kao, C., Heinz, D.L., Shu, J., Meng, Y. and Hemley, R.J., Bonding changes in compressed superhard graphite. Science, 2003, 302: 425–427.CrossRefGoogle Scholar
  64. [63]
    Popov, M., Kyotani, M. and Koga, Y. Superhard phase of single wall carbon nanotube: comparison with fullerite C60 and diamond. Diamond & Related Materials, 2003, 12(3): 833–839.CrossRefGoogle Scholar
  65. [64]
    Guo, W., Zhu, C.Z., Yu, T.X., Woo, C.H., Zhang, B. and Dai, Y.T., Formation of sp3 bonding in nanoindented carbon nanotubes and graphite. Physical Review Letters, 2004, 93: 245502–245506.CrossRefGoogle Scholar
  66. [65]
    Gogotsi, Y.G., Kailer, A. and Nickel, K.G., Materials: transformation of diamond to graphite. Nature, 1999, 401: 663–664.CrossRefGoogle Scholar
  67. [66]
    Zhang, B. and Guo, W., Cracking diamond anvil cells by compressed nanographite sheets near the contact edge. Applied Physics Letters, 2005, 87: 051907–051910.CrossRefGoogle Scholar
  68. [67]
    Wang, Z., Zhao, Y., Tait, K., Liao, X., Schiferl, D., Zha, C., Downs, R.T., Qian, J., Zhu, Y. and Shen, T., A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(38): 13699–13702.CrossRefGoogle Scholar
  69. [68]
    Kumar, R.S., Pravica, M.G., Cornelius, A.L., Nicol, M.F., Hu, M.Y. and Chow, P.C., X-ray Raman scattering studies on C60 fullerenes and multi-walled carbon nanotubes under pressure. Diamond & Related Materials, 2007, 16(4): 1250–1253.CrossRefGoogle Scholar
  70. [69]
    Duan, X., Tang, C., Zhang, J., Guo, W. and Liu, Z., Two distinct buckling modes in carbon nanotube bending. Nano Letters, 2007, 7(1): 143–148.CrossRefGoogle Scholar
  71. [70]
    Tang, C., Guo, W. and Chen, C., Bending manipulation induced sp2–sp3 bond transition in carbon nanotubes. Journal of Applied Physics, 2010, 108: 026108–026111.CrossRefGoogle Scholar
  72. [71]
    Tang, C., Zhang, Y., Guo, W. and Chen, C., Thermally activated interlayer bonding in multiwalled carbon nanotubes. Journal of Physical Chemistry C, 2010, 114(42): 18091–18095.CrossRefGoogle Scholar
  73. [72]
    Sofo, J.O., Chaudhari, A.S. and Barber, G.D., Graphane: A two-dimensional hydrocarbon. Physical Review B, 2007, 75: 153401–153405.CrossRefGoogle Scholar
  74. [73]
    Elias, D.C., Nair, R.R., Mohiuddin, T.M.G. and Morozov, S.V., Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science, 2009, 323: 610–613.CrossRefGoogle Scholar
  75. [74]
    Nair, R.R., Ren, W., Jalil, R., Riaz, I. and Kravets, V.G., Fluorographene: a two-dimensional counterpart of teflon. Small, 2010, 6: 2877–2884.CrossRefGoogle Scholar
  76. [75]
    Jeon, K.J., Lee, Z., Pollak, E., Moreschini, L., Bostwick, A. and Park, C.M., Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano, 2011, 5(2): 1042–1046.CrossRefGoogle Scholar
  77. [76]
    Zboril, R., Karlicky, F., Bourlinos, A.B., Steriotis, T.A., Stubos, A.K., Georgakilas, V., Safárová, K., Jancík, D., Trapalis, C., Otyepka, M., Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small, 2010, 6(24): 2885–2891.CrossRefGoogle Scholar
  78. [77]
    Badziag, P., Verwoerd, W.S., Ellis, W.P. and Greiner, N.R., Nanometre-sized diamonds are more stable than graphite. Nature, 1990, 343: 244–245.CrossRefGoogle Scholar
  79. [78]
    Barboza, A.P.M., Guimaraes, M.H.D., Massote, D.V.P. and Campos, L.C., Room-temperature compression-induced diamondization of FwLayer graphene. Advanced Materials, 2011, 23: 3014–3017.CrossRefGoogle Scholar
  80. [79]
    Leenaerts, O., Partoens, B. and Peeters, F.M., Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles. Physical Review B, 2009, 80: 245422–245428.CrossRefGoogle Scholar
  81. [80]
    Hornekær, L., Rauls, E., Xu, W., Sljivancanin, Z., Otero, R., Stensgaard, I. and Lægsgaard, E., Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Physical Review Letters, 2006, 96: 186102.CrossRefGoogle Scholar
  82. [81]
    Balog, R., Jørgensen, B., Wells, J., Lægsgaard, E., Hofmann, P., Besenbacher, F. and Hornekær, L., Atomic hydrogen adsorbate structures on graphene. Journal of the American Chemical Society, 2009, 131(25): 8744–8745.CrossRefGoogle Scholar
  83. [82]
    Lin, Y., Williams, T.V. and Connell, J.W., Soluble, exfoliated hexagonal boron nitride nanosheets. Journal of Physical Chemistry Letters, 2010, 1(1): 277–283.CrossRefGoogle Scholar
  84. [83]
    Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I. and Ajayan, P.M., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Letters, 2010, 10(8): 3209–3215.CrossRefGoogle Scholar
  85. [84]
    Zeng, H., Zhi, C., Zhang, Z., Wei, X., Wang, X., Guo, W., Bando, Y. and Golberg, D., ‘White graphenes’: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Letters, 2010, 10(12): 5049–5055.CrossRefGoogle Scholar
  86. [85]
    Zhang, Z.H. and Guo, W.L., Tunable ferromagnetic spin ordering in boron nitride nanotubes with topological fluorine adsorption. Journal of the American Chemical Society, 2009, 131(19): 6874–6879.CrossRefGoogle Scholar
  87. [86]
    Zhang, Z., Zeng, X.C. and Guo, W., Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism. Journal of the American Chemical Society, 2011, 133(37): 14831–14838.CrossRefGoogle Scholar
  88. [87]
    Sun, G., Kurti, J., Kertesz, M. and Baughman, R.H., Dimensional changes as a function of charge injection in single-walled carbon nanotubes. Journal of the American Chemical Society, 2002, 124(50): 15076–15080.CrossRefGoogle Scholar
  89. [88]
    Verissimo, A.M., Koiller, B., Chacham, H. and Capaz1, R.B, Electromechanical effects in carbon nanotubes: Ab initio and analytical tight-binding calculations. Physical Review B, 2003, 67: 161401(R).CrossRefGoogle Scholar
  90. [89]
    Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L. and Hone, J., Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology, 2010, 5: 722–726.CrossRefGoogle Scholar
  91. [90]
    Zhang, Z., Zeng, X.C. and Guo, W., Fluorinating hexagonal boron nitride/graphene multilayers into hybrid diamondlike nanofilms with tunable energy gap. Journal of Physical Chemistry C, 2011, 115(44): 21678–21684.CrossRefGoogle Scholar
  92. [91]
    Freeman, C.L., Claeyssens, F., Allan, N.L. and Harding, J.H., Graphitic nanofilms as precursors to wurtzite films: Theory. Physical Review Letters, 2006, 96: 066102–066106.CrossRefGoogle Scholar
  93. [92]
    Tusche, C., Meyerheim, H.L. and Kirschner, J., Observation of depolarized ZnO (0001) monolayers: Formation of unreconstructed planar sheets. Physical Review Letters, 2007, 99: 026102–026106.CrossRefGoogle Scholar
  94. [93]
    Wu, D., Lagally, M.G. and Liu, F., Stabilizing graphitic thin films of wurtzite materials by epitaxial strain. Physical Review Letters, 2011, 107: 236101–236106.CrossRefGoogle Scholar
  95. [94]
    Méndez, R.B., Urías, F.L., Terrones, M. and Terrones, H., Magnetic behavior in zinc oxide zigzag nanoribbons. Nano Letters, 2008, 8(6): 1562–1565.CrossRefGoogle Scholar
  96. [95]
    Kou, L., Li, C., Zhang, Z. and Guo, W., Tuning magnetism in zigzag ZnO nanoribbons by transverse electric fields. ACS Nano, 2010, 4(4): 2124–2128.CrossRefGoogle Scholar
  97. [96]
    Kou, L., Li, C., Zhang, Z. and Guo, W., Electric field and hydrogen passivation induced band modulations in armchair ZnO nanoribbons. Journal of Physical Chemistry C, 2010, 114(2): 1326–1330.CrossRefGoogle Scholar
  98. [97]
    Wu, W., Lu, P., Zhang, Z. and Guo, W., Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons. ACS Appllied Materials & Interfaces, 2011, 3: 4787–4796.CrossRefGoogle Scholar
  99. [98]
    Iijima, S., Brabec, C., Maiti, A. and Bernholc, J., Structural flexibility of carbon nanotubes. Journal of Chemical Physics, 1996, 104: 2089–2092.CrossRefGoogle Scholar
  100. [99]
    Yakobson, B.I., Campbell, M.P., Brabec, C.J. and Bernholc, J., High strain rate fracture and C-chain unraveling in carbon nanotubes. Computional Materials Science, 1997, 8: 341–348.CrossRefGoogle Scholar
  101. [100]
    Li, C.Y. and Chou, T.W., Elastic wave velocities in single-walled carbon nanotubes. Physical Review B, 2006, 73: 245407.CrossRefGoogle Scholar
  102. [101]
    Yakobson, B.I., Brabec, C.J. and Bernholc, J., Nanomechanics of carbon tubes: Instabilities beyond linear response. Physical Review Letters, 1996, 76: 2511–2514.CrossRefGoogle Scholar
  103. [102]
    Wang, L.F. and Hu, H.Y., Flexural wave propagation in single-walled carbon nanotubes. Physical Review B, 2005, 71: 195412.CrossRefGoogle Scholar
  104. [103]
    Wang, L.F., Hu, H.Y., and Guo, W.L., Validation of the non-local elastic shell model for studying longitudinal waves in single-walled carbon nanotubes. Nanotechnology, 2006, 17: 1408–1415.CrossRefGoogle Scholar
  105. [104]
    Wang, L.F., Guo, W.L. and Hu, H.Y., Group velocity of wave propagation in carbon nanotubes, Proceedings of the Royal Society A, 2008, 464: 1423–1438.MathSciNetzbMATHCrossRefGoogle Scholar
  106. [105]
    Wang, L.F., Liew, K.M., He, X.Q., Hu, Y.G., Wang, Q., Guo, W.L. and Hu, H.Y., Using model of strain gradient membrane shell to characterize longitudinal wave dispersion in multi-walled carbon nanotubes. Journal of Computational and Theoretical Nanoscience, 2008, 5(10): 1980–1988.CrossRefGoogle Scholar
  107. [106]
    Wang, J.B., Guo, X., Zhang, H.W., Wang, L. and Liao, J.B., Energy and mechanical properties of singlewalled carbon nanotubes predicted using the higher order Cauchy-Born rule. Physical Review B, 2006, 73: 115428.CrossRefGoogle Scholar
  108. [107]
    Li, C.Y. and Chou, T.W., A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, 2003, 40(10): 2487–2499.zbMATHCrossRefGoogle Scholar
  109. [108]
    Li, C.Y. and Chou, T.W., Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Physical Review B, 2003, 68: 073405.CrossRefGoogle Scholar
  110. [109]
    Chang, T.C. and Gao, H.J., Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. Journal of the Mechanics and Physics of solids, 2003, 51(6): 1059–1074.zbMATHCrossRefGoogle Scholar
  111. [110]
    Li, H.J. and Guo, W.L., Transversely isotropic elastic properties of single-walled carbon nanotubes by a rectangular beam model for the C-C bonds. Journal of Applied Physics, 2008, 103: 103501.CrossRefGoogle Scholar
  112. [111]
    Yoon, J., Ru, C.Q. and Mioduchowski, A., Noncoaxial resonance of an isolated multiwall carbon nanotube. Physical Review B, 2002, 66, 233402.CrossRefGoogle Scholar
  113. [112]
    Yoon, J., Ru, C.Q. and Mioduchowski, A., Sound wave propagation in multiwall carbon nanotubes. Journal of Applied Physics, 2003, 93: 4801–4806.CrossRefGoogle Scholar
  114. [113]
    Natsuki, T., Hayashi, T. and Endo, M., Wave propagation of carbon nanotubes embedded in an elastic medium. Journal of Applied Physics, 2005, 97: 044307.CrossRefGoogle Scholar
  115. [114]
    Natsuki, T., Endo, M. and Tsuda, H., Vibration analysis of embedded carbon nanotubes using wave propagation approach. Journal of Applied Physics, 2006, 99: 034311.CrossRefGoogle Scholar
  116. [115]
    Liu, P., Gao, H.J. and Zhang, Y.W., Spontaneous generation and propagation of transverse coaxial traveling waves in multiwalled carbon nanotubes. Applied Physics Letters, 2008, 93: 013106.CrossRefGoogle Scholar
  117. [116]
    Poncharal, P., Wang, Z.L., Ugarte, D. and de Heer, W.A., Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science, 1999, 283: 1513–1516.CrossRefGoogle Scholar
  118. [117]
    Zheng, X.J. and Zhu, L.L., Theoretical analysis of electric field effect on Young’s modulus of nanowires. Applied Physics Letters, 2006, 89: 153110.CrossRefGoogle Scholar
  119. [118]
    Zheng, X.J. and Qiao, L., Electric field effects on Young’s molulus of nanowires. Acta Mechanica Solida Sinica, 2009, 22: 511–523.CrossRefGoogle Scholar
  120. [119]
    Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M., Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, 381: 678–680.CrossRefGoogle Scholar
  121. [120]
    Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy, M.M.J., Young’s modulus of singlewalled nanotubes. Physical Review B, 1998, 58: 14013–14019.CrossRefGoogle Scholar
  122. [121]
    Astumian, R.D., Thermodynamics and kinetics of a Brownian motor. Science, 1997, 276: 917–922.CrossRefGoogle Scholar
  123. [122]
    Xu, Z.P., Zheng, Q.S., and Chen, G.H., Thermally driven large-amplitude fluctuations in carbon-nanotube-based devices: Molecular dynamics simulations. Physical Review B, 2006, 74: 195445.Google Scholar
  124. [123]
    Wang, L.F., Hu, H.Y. and Guo, W.L., Thermal vibration of carbon nanotubes predicted by beam models and molecular dynamics. Proceedings of the Royal Society A, 2010, 466: 2325–2340.MathSciNetzbMATHCrossRefGoogle Scholar
  125. [124]
    Li, X.Y., Yang, W. and Liu, B., Bending induced rippling and twisting of multiwalled carbon nanotubes. Physical Review Letters, 2007, 98: 205502.CrossRefGoogle Scholar
  126. [125]
    Chang, T.C., Dominoes in carbon nanotubes. Physical Review Letters, 2008, 101: 175501.CrossRefGoogle Scholar
  127. [126]
    Shi, X.H., Bussche, A., Hurt, R.H., Kane, A.B. and Gao, H.J., Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nature Nanotechnology, 2011, 6: 714–719.CrossRefGoogle Scholar
  128. [127]
    Cumings, J. and Zettl, A., Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science, 2000, 289: 602–604.CrossRefGoogle Scholar
  129. [128]
    Cumings, J., Collins, P.G. and Zettl, A., Materials: Peeling and sharpening multiwall nanotubes. Nature, 2000, 406: 586.CrossRefGoogle Scholar
  130. [129]
    Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J. and Zettl, A., Rotational actuators based on carbon nanotubes. Nature, 2003, 424: 408–410.CrossRefGoogle Scholar
  131. [130]
    Zheng, Q.S. and Jiang, Q., Multiwalled carbon nanotubes as gigahertz oscillators. Physical Review Letters, 2002, 88: 045503.CrossRefGoogle Scholar
  132. [131]
    Zheng, Q.S., Liu, J.Z. and Jiang, Q., Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation. Physical Review B, 2002, 65: 245409.CrossRefGoogle Scholar
  133. [132]
    Guo, W.L., Guo, Y.F., Gao, H.J., Zhen, Q.S. and Zhong, W.Y., Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Physical Review Letters, 2003, 91: 125501.CrossRefGoogle Scholar
  134. [133]
    Zhao, Y., Ma, C.C., Chen, G.H. and Jiang, Q., Energy dissipation mechanisms in carbon nanotube oscillators. Physical Review Letters, 2003, 91: 175504.CrossRefGoogle Scholar
  135. [134]
    Servantie, J. and Gaspard, P., Methods of calculation of a friction coefficient: application to nanotubes. Physical Review Letters, 2003, 91: 185503.CrossRefGoogle Scholar
  136. [135]
    Guo, W.L. and Gao, H.J., Optimized bearing and interlayer friction in multiwalled carbon nanotubes. Computer Modeling in Engineering & Sciences, 2005, 7(1): 19–34.MathSciNetGoogle Scholar
  137. [136]
    Guo, W.L., Zhong, W.Y., Dai, Y.T. and Li, S., Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes. Physical Review B, 2005, 72: 075409.CrossRefGoogle Scholar
  138. [137]
    Kis, A., Jensen, K., Aloni, S., Mickelson, W. and Zettl, A., Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Physical Review Letters, 2006, 97: 025501.CrossRefGoogle Scholar
  139. [138]
    Mate, C.M., McClelland, G.M., Erlandsson, R. and Chiang, S., Atomic-scale friction of a tungsten tip on a graphite surface. Physical Review Letters, 1987, 59: 1942–1945.CrossRefGoogle Scholar
  140. [139]
    Ruan, J.A. and Bhushan, B., Nanoindentation studies of fullerene films using atomic force microscopy. Journal of Materials Research, 1993, 8: 3019–3022.CrossRefGoogle Scholar
  141. [140]
    Schwarz, U.D., Zwörner, O., Köster, P. and Wiesendanger, R., Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Physical Review B, 1997, 56: 6987–6996.CrossRefGoogle Scholar
  142. [141]
    Liu, E., Blanpain, B., Celis, J.P. and Roos, J.R., Comparative study between macrotribology and nanotribology. Journal of Applied Physics, 1998, 84: 4859.CrossRefGoogle Scholar
  143. [142]
    Buzio, R., Gnecco, E., Boragno, C. and Valbusa, U., Friction force microscopy investigation of nanostructured carbon films. Carbon, 2002, 40: 883–890.CrossRefGoogle Scholar
  144. [143]
    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A. and Zandbergen, H.W., Superlubricity of graphite. Physical Review Letters, 2004, 92: 126101.CrossRefGoogle Scholar
  145. [144]
    Dienwiebel, M., Pradeep, N., Verhoeven, G.S., Zandbergen, H.W. and Frenken, J.W.M., Model experiments of superlubricity of graphite. Surface Science, 2005, 576: 197–211.CrossRefGoogle Scholar
  146. [145]
    Verhoeven, G.S., Dienwiebel, M. and Frenken, J.W.M., Model calculations of superlubricity of graphite. Physical Review B, 2004, 70: 165418.CrossRefGoogle Scholar
  147. [146]
    Matsushita, K., Matsukawa, H. and Sasaki, N., Atomic scale friction between clean graphite surfaces. Solid State Communications, 2005, 136: 51–55.CrossRefGoogle Scholar
  148. [147]
    Guo, Y.F., Guo, W.L. and Chen, C.F., Modifying atomic-scale friction between two graphene sheets: A molecular-force-field study. Physical Review B, 2007, 76: 155429.CrossRefGoogle Scholar
  149. [148]
    Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., Horn, K. and Bennewitz, R., Friction and dissipation in epitaxial graphene films. Physical Review Letters, 2009, 102: 086102.CrossRefGoogle Scholar
  150. [149]
    Filleter, T. and Bennewitz, R., Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Physical Review B, 2010, 81: 155412.CrossRefGoogle Scholar
  151. [150]
    Lee, C.G., Li, Q.Y., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W. and Hone, J., Frictional characteristics of atomically thin sheets. Science, 2010, 328: 76–80.CrossRefGoogle Scholar
  152. [151]
    Choi, J.S., Kim, J.S., Byun, I.S., Lee, D.H., Lee, M.J., Park, B.H., Lee, C., Yoon, D., Cheong, H., Lee, K.H., Son, Y.W., Park, J.Y. and Salmeron, M., Friction anisotropy-driven domain imaging on exfoliated monolayer graphene. Science, 2011, 333: 607–610.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical Structures and Key Laboratory for Intelligent Nano Materials and Devices of MOE, Institute of NanoscienceNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations