Advertisement

Acta Mechanica Solida Sinica

, Volume 24, Issue 1, pp 1–26 | Cite as

Perspectives in mechanics of heterogeneous solids

  • C. Q. Chen
  • J. Z. Cui
  • H. L. Duan
  • X. Q. Feng
  • L. H. He
  • G. K. Hu
  • M. J. Huang
  • Y. Z. Huo
  • B. H. Ji
  • B. Liu
  • X. H. Peng
  • H. J. Shi
  • Q. P. Sun
  • J. X. Wang
  • Y. S. Wang
  • H. P. Zhao
  • Y. P. Zhao
  • Q. S. Zheng
  • W. N. Zou
Article

Abstract

The Micro- and Nano-mechanics Working Group of the Chinese Society of Theoretical and Applied Mechanics organized a forum to discuss the perspectives, trends, and directions in mechanics of heterogeneous materials in January 2010. The international journal, Acta Mechanica Solida Sinica, is devoted to all fields of solid mechanics and relevant disciplines in science, technology, and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. On the occasion of the 30th anniversary of Acta Mechanica Solida Sinica, its editor-in-chief, Professor Q.S. Zheng invited some of the forum participants to review the state-of-the-art of mechanics of heterogeneous solids, with a particular emphasis on the recent research development results of Chinese scientists. Their reviews are organized into five research areas as reported in different sections of this paper. §I firstly brings in focus on micro- and nano-mechanics, with regards to several selective topics, including multiscale coupled models and computational methods, nanocrystal superlattices, surface effects, micromechanical damage mechanics, and microstructural evolution of metals and shape memory alloys. §II shows discussions on multifield coupled mechanical phenomena, e.g., multi-fields actuations of liquid crystal polymer networks, mechanical behavior of materials under radiations, and micromechanics of heterogeneous materials. In § III, we mainly address the multiscale mechanics of biological nanocomposites, biological adhesive surface mechanics, wetting and dewetting phenomena on microstructured solid surfaces. The phononic crystals and manipulation of elastic waves were elaborated in § IV. Finally, we conclude with a series of perspectives on solid mechanics. This review will set a primary goal of future science research and engineering application on solid mechanics with the effort of social and economic development.

Key words

heterogeneous materials smart materials biological materials multiscale mechanics micro- and nano-mechanics damage and fracture constitutive relation elastic wave surface effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cui, J.Z. and Yang, H.Y., A dual coupled method of boundary value problems of PDE with coefficients of small period. Journal of Computer Mathematics, 1996, 14: 159–174.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Cao, L.Q. and Cui, J.Z., Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains. Numerische Mathematik, 2004, 96: 525–581.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Li, Y.Y. and Cui, J.Z., The multiscale computational method for the mechanics parameters of the materials with random distribution of multiscale grains. Composites Science and Technology, 2005, 65: 1447–1458.CrossRefGoogle Scholar
  4. [4]
    Cui, J. and Yu, X., A two-scale method for identifying mechanical parameters of composite materials with periodic configuration. Acta Mechanica Sinica, 2006, 22: 581–594.zbMATHCrossRefGoogle Scholar
  5. [5]
    Han, F., Cui, J.Z. and Yu, Y., The statistical two-order and two-scale method for predicting the mechanics parameters of core-shell particle-filled polymer composites. Interaction and Multi-scale Mechanics: An International Journal, 2008, 1: 231–251.CrossRefGoogle Scholar
  6. [6]
    Han F., Cui, J.Z. and Yu, Y., The statistical second-order two-scale method for thermomechanical properties of statistically inhomogeneous materials. Computational Materials Science, 2009, 46: 654–659.CrossRefGoogle Scholar
  7. [7]
    Tadmor, E.B., Ortiz, M. and Phillips, R., Quasicontinuum analysis of defects in solids. Philosophical Magzine A, 1996, 73: 1529–1563.CrossRefGoogle Scholar
  8. [8]
    Miller, R. and Tadmor, E.B., The Quasicontinuum Method: Overview, applications and current directions. Journal of Computer-Aided Materials Design, 2002, 9: 203–239.CrossRefGoogle Scholar
  9. [9]
    Rudd, R.E. and Broughton, J.Q., Coarse-grained molecular dynamics and the atomic limit of finite elements. Physical Review B, 1998, 58: 5893–5896.CrossRefGoogle Scholar
  10. [10]
    Wagner, G.J. and Liu, W.K., Coupling of atomistic and continuum simulations using a bridging scale decomposition. Journal of Computational Physics, 2003, 190: 249–274.zbMATHCrossRefGoogle Scholar
  11. [11]
    Li, X.T. and Weinan, E., Multiscale modeling of the dynamics of solids at finite temperature. Journal of the Mechanics and Physics of Solids, 2005, 53: 1650–1685.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Eringen, A.C., Continuum mechanics at atomistic scale. Crystal Lattice Defects, 1972, 75: 109–130.Google Scholar
  13. [13]
    Eringen, A.C., Theory of nonlocal thermoelasticity. International Journal of Engineering Science, 1974, 12: 1063–1077.zbMATHCrossRefGoogle Scholar
  14. [14]
    Silling, S.A., Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48: 175–209.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Arndt, M. and Griebel, M., Derivation of higher order gradient continuum models from atomistic models for crystalline solids. Multiscale Modeling and Simulation, 2005, 4: 531–562.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Blanc, X., Le Bris, C. and Lions, P.L., From molecular models to continuum mechanics. Archive for Rational Mechanics and Analysis, 2002, 164: 341–381.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Xiang, M.Z., Cui, J.Z. and Tian, X., A nonlocal continuum model based on atomistic model at zero temperature. IOP Conference Series: Materials Science and Engineering, 2010, 10: 012070.CrossRefGoogle Scholar
  18. [18]
    Liu, B., Huang, Y., Jiang, H., Qu, S. and Hwang, K.C., The atomic-scale finite element method. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1849–1864.zbMATHCrossRefGoogle Scholar
  19. [19]
    Chen, Y.L., Liu, B., He, X.Q., Huang, Y. and Hwang, K.C., Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Composites Science and Technology, 2010, 70: 1360–1367.CrossRefGoogle Scholar
  20. [20]
    Murray, C.B., Kagan, C.R. and Bawendi, M.G., Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science, 2000, 30: 545–610.CrossRefGoogle Scholar
  21. [21]
    Talapin, D.V., Lee, J.S., Kovalenko, M.V. and Shevchenko, E.V., Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chemical Reviews, 2010, 110: 389–458.CrossRefGoogle Scholar
  22. [22]
    Podsiadlo, P., Krylova, G., Lee, B., Critchley, K., Gosztola, D.J., Talapin, D.V., Ashby, P.D. and Shevchenko, E.V., The role of order, nanocrystal size, and capping ligands in the collective mechanical response of three-dimensional nanocrystal solids. Journal of the American Chemical Society, 2010, 132: 8953–8960.CrossRefGoogle Scholar
  23. [23]
    Schapotschnikow, P., Pool, R. and Vlugt, T.J.H., Molecular simulations of interacting nanocrystals. Nano Letters, 2008, 8: 2930–2934.CrossRefGoogle Scholar
  24. [24]
    Rupich, S.M., Shevchenko, E.V., Bodnarchuk, M.I., Lee, B. and Talapin, D.V., Size-dependent multiple twinning in nanocrystal superlattices. Journal of the American Chemical Society, 2010, 132: 289–296.CrossRefGoogle Scholar
  25. [25]
    Schall, P., Cohen, I., Weitz, D.A. and Spaepen, F., Visualization of dislocation dynamics in colloidal crystals. Science, 2004, 305: 1944–1948.CrossRefGoogle Scholar
  26. [26]
    Schall, P., Cohen, I., Weitz, D.A. and Spaepen, F., Visualizing dislocation nucleation by indenting colloidal crystals. Nature, 2006, 440: 319–323.CrossRefGoogle Scholar
  27. [27]
    Clyne, T.W., Golosnoy, I.O., Tan, J.C. and Markaki, A.E., Porous materials for thermal management under extreme conditions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364: 125–146.CrossRefGoogle Scholar
  28. [28]
    Jia, F., Yu, C., Deng, K. and Zhang, L., Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance. The Journal of Physical Chemistry C, 2007, 111: 8424–8431.CrossRefGoogle Scholar
  29. [29]
    Choi, Y.M. and Pyun, S.I., Effects of intercalation-induced stress on lithium transport through porous Li-CoO2 electrode. Solid State Ionics, 1997, 99: 173–183.CrossRefGoogle Scholar
  30. [30]
    Renganathan, S., Sikha, G., Santhanagopalan, S. and White, R.E., Theoretical analysis of stresses in a lithium ion cell. Journal of the Electrochemical Society, 2010, 157: 155–163.CrossRefGoogle Scholar
  31. [31]
    Cheng, Y.T. and Verbrugge, M.W., The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. Journal of Applied Physics, 2008, 104: 083521.CrossRefGoogle Scholar
  32. [32]
    Katoh, Y., Snead, L.L., Henager, C.H., Hasegawa, A., Kohyama, A., Riccardi, B. and Hegeman, H., Current status and critical issues for development of SiC composites for fusion applications. Journal of Nuclear Materials, 2007, 367: 659–671.CrossRefGoogle Scholar
  33. [33]
    Xue, K., Niu, L.S., Shi, H.J. and Liu, J., Structural relaxation of amorphous silicon carbide thin films in thermal annealing. Thin Solid Films, 2008, 516: 3855–3861.CrossRefGoogle Scholar
  34. [34]
    Xue, K., Niu, L.S. and Shi, H.J., Effects of quench rates on the short- and medium-range orders of amorphous silicon carbide: A molecular-dynamics study. Journal of Applied Physics, 2008, 104: 053518.CrossRefGoogle Scholar
  35. [35]
    Xue, K. and Niu, L.S., Understanding the changes in mechanical properties due to the crystalline-to-amorphization transition in SiC. Journal of Applied Physics, 2009, 106: 083505.CrossRefGoogle Scholar
  36. [36]
    Huh, C. and Scriven, L.E., Hydrodynamic model of the steady movement of a solid/liquid/fluid contact line. Journal of Colloid and Interface Science, 1971, 35: 85–101.CrossRefGoogle Scholar
  37. [37]
    Yuan, Q.Z. and Zhao, Y.P., Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Physical Review Letters, 2010, 104: 246101.CrossRefGoogle Scholar
  38. [38]
    Yuan, Q.Z. and Zhao, Y.P., Hydroelectric voltage generation based on water-filled single-walled carbonnanotubes. Journal of the American Chemical Society, 2009, 131: 6374–6376.CrossRefGoogle Scholar
  39. [39]
    Mchale, G., Newton, M.I., Rowan, S.M. and Banerjee, M., The spreading of small viscous stripes of oil. Journal of Physics D: Applied Physics, 1995, 28: 1925–1929.CrossRefGoogle Scholar
  40. [40]
    Mugele, F. and Baret, J.C., Electrowetting: From basics to applications. Journal of Physics—Condensed Matter, 2005, 17: 705–774.CrossRefGoogle Scholar
  41. [41]
    Yuan, Q.Z. and Zhao, Y.P., Transport properties and induced voltage in the structure of water-filled single-walled boron-nitrogen nanotubes. Biomicrofluidics, 2009, 3: 022411.CrossRefGoogle Scholar
  42. [42]
    Mura, T., Micromechanics of Defects in Solids. London: Springer, 1987.zbMATHCrossRefGoogle Scholar
  43. [43]
    Nemat-Nasser, S., Hori, M. and Bielski, W., Micromechanics: Overall Properties of Heterogeneous Materials. Amsterdam: Elsevier, 1999.zbMATHGoogle Scholar
  44. [44]
    Eshelby, J.D., Elastic inclusions and inhomogeneities. Progress in Solid Mechanics, 1961, 2: 89–140.MathSciNetGoogle Scholar
  45. [45]
    Zheng, Q.S., Zhao, Z.H., Du, D.X., Irreducible structure, symmetry and average of Eshelby’s tensor fields in isotropic elasticity, Journal of the Mechanics and Physics of Solids, 2006, 54: 368–383.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    Zou, W.N., He, Q.C., Huang, M.J. and Zheng, Q.S., Eshelby’s problem of non-elliptical inclusions. Journal of the Mechanics and Physics of Solids, 2010, 58: 346–372.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    Cross, M.C. and Hohenberg, P.C., Pattern-formation outside of equilibrium. Review of Modern Physics, 1993, 65: 851–1112.zbMATHCrossRefGoogle Scholar
  48. [48]
    Gollub, J.P. and Langer, J.S., Pattern formation in nonequilibrium physics. Review of Modern Physics, 1999, 71: S396–S403.CrossRefGoogle Scholar
  49. [49]
    Langer, J.S., Instabilities and pattern-formation in crystal-growth. Review of Modern Physics, 1980, 52: 1–28.MathSciNetCrossRefGoogle Scholar
  50. [50]
    He, Y.J. and Sun, Q.P., Rate-dependent domain spacing in a stretched NiTi strip. International Journal of Solids and Structures, 2010, 47: 2775–2783.zbMATHCrossRefGoogle Scholar
  51. [51]
    He, Y.J. and Sun, Q.P., Scaling relationship on macroscopic helical domains in NiTi tubes. International Journal of Solids and Structures, 2009, 46: 4242–4251.zbMATHCrossRefGoogle Scholar
  52. [52]
    He, Y.J., Yin, H., Zhou, R.H. and Sun, Q.P., Ambient effect on damping peak of NiTi shape memory alloy. Materials Letters, 2010, 64: 1483–1486.CrossRefGoogle Scholar
  53. [53]
    Sun, Q.P. and He, Y.J., A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals. International Journal of Solids and Structures, 2008, 45: 3868–3896.zbMATHCrossRefGoogle Scholar
  54. [54]
    Huang, M.J. and Man, C.S., Constitutive relation of elastic polycrystal with quadratic texture dependence. Journal of Elasticity, 2003, 72: 183–212.MathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    Roe, R.J., Description of crystallite orientation in polycrystalline materials. III: General solution to pole figure inversion. Journal of Applied Physics, 1965, 36: 2024–2031.CrossRefGoogle Scholar
  56. [56]
    Man, C.S., On the constitutive equations of some weakly-textured materials. Archive for Rational Mechanics and Analysis, 1998, 143: 77–103.MathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    Huang, M.J., Lan, Z.W. and Liang, H.L., Constitutive relation of an orthorhombic polycrystal with the shape coefficients. Acta Mechanica Sinica, 2005, 21: 608–618.MathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    Man, C.S., Effects of crystallographic texture on the acoustoelastic coefficients of polycrystals. Nondestructive Testing and Evaluation, 1999, 15: 191–214.CrossRefGoogle Scholar
  59. [59]
    Huang, M.J., Zhan, H., Lin, X.Q. and Tang, H., Constitutive relation of weakly anisotropic polycrystal with microstructure and initial stress. Acta Mechanica Sinica, 2007, 23: 183–198.MathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    Huang, M.J. and Man, C.S., Explicit bounds of effective stiffness tensors for textured aggregates of cubic crystallites. Mathematics and Mechanics of Solids, 2008, 13: 408–430.MathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    Man, C.S., On the correlation of elastic and plastic anisotropy in sheet metals. Journal of Elasticity, 1995, 39: 165–173.MathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    Man, C.S. and Huang, M.J., Identification of material parameters in yield functions and flow rules for weakly textured sheets of cubic metals. International Journal of Nonlinear Mechanics, 2001, 36: 501–514.zbMATHCrossRefGoogle Scholar
  63. [63]
    Li, B.W., Zhao, H.P., Feng, X.Q., Guo, W.W. and Shan, S.C., Experimental study on the mechanical properties of the horn sheaths from cattle. Journal of Experimental Biology, 2010, 213: 479–486.CrossRefGoogle Scholar
  64. [64]
    Peng, Z.L., Chen, S.H. and Soh, A.K., Peeling behavior of a bio-inspired nano-film on a substrate. International Journal of Solids and Structures, 2010, 47: 1952–1960.zbMATHCrossRefGoogle Scholar
  65. [65]
    Bower, A.F., Cyclic hardening properties of hard-drawn copper and rail steel. Journal of the Mechanics and Physics of Solids, 1989, 37: 455–470.CrossRefGoogle Scholar
  66. [66]
    Sheng, G.M., Fan, J.H. and Peng, X.H., Influence of technical states and stress levels on contact fatigue life of PD3 rail steel. Acta Metallurgica Sinica, 2000, 36: 1157–1160.Google Scholar
  67. [67]
    Sheng, G.M., Fan, J.H., Peng, X.H., Jiang, B., Ji, K.B., Su, S.H. and Ke, X.T., Investigation of contact fatigue behaviors of PD3 rail steel. Steel Iron, 1998, 33: 35–39.Google Scholar
  68. [68]
    Langford, G., Deformation of pearlite. Metallurgical and Materials Transaction A, 1977, 8: 861–875.CrossRefGoogle Scholar
  69. [69]
    Yu, S.W. and Feng, X.Q., A micromechanics-based model for microcrack-weakened brittle solids, Mechanics of Materials, 1995, 20: 59–76.CrossRefGoogle Scholar
  70. [70]
    Feng, X.Q., Li, J.Y. and Yu, S.W., A simple method for calculating interaction of numerous microcracks and its applications. International Journal of Solids and Structures, 2003, 40: 447–464.zbMATHCrossRefGoogle Scholar
  71. [71]
    Ren, Z.J., Peng, X.H., Hu, N. and Yang, C.H., A micromechanical damage model for rocks and concretes under triaxial compression. Applied Mathematics and Mechanics, 2009, 30: 323–333.zbMATHCrossRefGoogle Scholar
  72. [72]
    Ren, Z.J., Peng, X.H. and Yang, C.H., Micromechanical damage model for rocks and concretes subjected to coupled tensile and shear stresses. Acta Mechanica Solida Sinica, 2008, 21: 232–240.CrossRefGoogle Scholar
  73. [73]
    Ma, L., Wang, X.Y., Feng, X.Q. and Yu, S.W., Numerical analysis of interaction and coalescence of numerous microcracks, Engineering Fracture Mechanics, 2005, 72: 1841–1865.CrossRefGoogle Scholar
  74. [74]
    Shaw, J.A. and Kyriakides, S., Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. International Journal of Plasticity, 1997, 13: 837–871.CrossRefGoogle Scholar
  75. [75]
    Sun, Q.P. and Li, Z.Q., Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion—from localization to homogeneous deformation. International Journal of Solids and Structures, 2002, 39: 3797–3809.CrossRefGoogle Scholar
  76. [76]
    Peng, X., Pi, W. and Fan, J., A microstructure-based constitutive model for the pseudoelastic behavior of NiTi SMAs. International Journal of Plasticity, 2008, 24: 966–990.zbMATHCrossRefGoogle Scholar
  77. [77]
    Chu, X., Barnett, S.A., Wong, M.S. and Sproul, W.D., Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings. Surface and Coatings Technology, 1993, 57: 13–18.CrossRefGoogle Scholar
  78. [78]
    Sproul, W.D., High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings. Vacuum, 1998, 51: 641–646.CrossRefGoogle Scholar
  79. [79]
    Chu, X., Sproul, W.D., Rohde, S.L. and Barnett, S.A., Deposition and properties of polycrystalline TiN/NbN superlattice coatings. Journal of Vacuum Science and Technology A, 1992, 10: 1604–1609.CrossRefGoogle Scholar
  80. [80]
    Yin, D.Q., Peng, X.H., Qin, Y. and Wang, Z.C., Electronic property and bonding configuration at the TiN(111)/VN(111) interface. Journal of Applied Physics, 2010, 108: 033714.CrossRefGoogle Scholar
  81. [81]
    Xie, P. and Zhang, R.B., Liquid crystal elastomers, networks and gels: advanced smart materials. Journal of Materials Chemistry, 2005, 15: 2529–2550.CrossRefGoogle Scholar
  82. [82]
    de Gennes, P.-G., Re’flexions sur un type de polyme‘res ne’matiques. Comptes Rendus de l’Académie des Sciences, 1975, 281: 101–103.Google Scholar
  83. [83]
    Warner, M., New elastic behaviour arising from the unusual constitutive relation of nematic solids. Journal of the Mechanics and Physics of Solids, 1999, 47: 1355–1377.MathSciNetzbMATHCrossRefGoogle Scholar
  84. [84]
    Conti, S., DeSimone, A. and Dolzmann, G., Soft elastic response of stretched sheets of nematic elastomers: a numerical study. Journal of the Mechanics and Physics of Solids, 2002, 50: 1431–1451.MathSciNetzbMATHCrossRefGoogle Scholar
  85. [85]
    DeSimone, A. and Teresi, L., Elastic energies for nematic elastomers. The European Physical Journal E, 2009, 29: 191–204.CrossRefGoogle Scholar
  86. [86]
    Fried, E. and Sellers, S., Free-energy density functions for nematic elastomers. Journal of the Mechanics and Physics of Solids, 2004, 52: 1671–1689.MathSciNetzbMATHCrossRefGoogle Scholar
  87. [87]
    Jin, L., Yan, Y. and Huo, Y., A gradient model of light-induced bending in photochromic liquid crystal elastomer and its nonlinear behaviors. International Journal of Nonlinear Mechanics, 2010, 45: 370–381.CrossRefGoogle Scholar
  88. [88]
    Finkelmann, H., Kim, S.T., Munoz, A., Palffy-Muhoray, P. and Taheri, B., Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Advanced Materials, 2001, 13: 1069–1072.CrossRefGoogle Scholar
  89. [89]
    Yu, Y.L., Nakano, M. and Ikeda, T., Directed bending of a polymer film by light — Miniaturizing a simple photomechanical system could expand its range of applications. Nature, 2003, 425: 145–145.CrossRefGoogle Scholar
  90. [90]
    van Oosten, C.L., Bastiaansen, C.W.M. and Broer, D.J., Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Materials, 2009, 8: 677–682.CrossRefGoogle Scholar
  91. [91]
    Lehmann, W., Skupin, H., Tolksdorf, C., Gebhard, E., Zentel, R., Kruger, P., Losche, M. and Kremer, F., Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature, 2001, 410: 447–450.CrossRefGoogle Scholar
  92. [92]
    Finkelmann, H., Nishikawa, E., Pereira, G.G. and Warner, M., A new opto-mechanical effect in solids. Physical Review Letters, 2001, 8701: 015501.CrossRefGoogle Scholar
  93. [93]
    Ding, R., Huo, Z. and Li, L.A., Effects of fission heat and fuel swelling on the thermal-mechanical behaviors of dispersion fuel elements. Mechanics of Advanced Materials and Structures, 2009, 16: 552–559.CrossRefGoogle Scholar
  94. [94]
    Huo, Y., Zu, X.T., Li, A., Wang, Z.G. and Wang, L.M., Modeling and simulation of irradiation effects on martensitic transformations in shape memory alloys. Acta Materialia, 2004, 52: 2683–2690.CrossRefGoogle Scholar
  95. [95]
    Fu, S.Y., Feng, X.Q., Lauke, B. and Mai, Y.W., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites. Composites Part B: Engineering, 2008, 39: 933–961.CrossRefGoogle Scholar
  96. [96]
    Hu, G., Liu, X. and Lu, T.J., A variational method for non-linear micropolar composites. Mechanics of Materials, 2005, 37: 407–425.CrossRefGoogle Scholar
  97. [97]
    Luciano, R. and Willis, J.R., Bounds on non-local effective relations for random composites loaded by configuration-dependent body force. Journal of the Mechanics and Physics of Solids, 2000, 48: 1827–1849.MathSciNetzbMATHCrossRefGoogle Scholar
  98. [98]
    Bigoni, D. and Drugan, W.J., Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. Journal of Applied Mechanics—Transaction of the ASME, 2007, 74: 741–753.MathSciNetCrossRefGoogle Scholar
  99. [99]
    Chen, H., Liu, X., Hu, G. and Yuan, H., Identification of material parameters of micropolar theory for composites by homogenization method. Computational Materials Science, 2009, 46: 733–737.CrossRefGoogle Scholar
  100. [100]
    Forest, S., Barbe, F. and Cailletaud, G., Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. International Journal of Solids and Structures, 2000, 37: 7105–7126.MathSciNetzbMATHCrossRefGoogle Scholar
  101. [101]
    Shelby, R.A., Smith, D.R. and Schultz, S., Experimental verification of a negative index of refraction. Science, 2001, 292: 77–79.CrossRefGoogle Scholar
  102. [102]
    Zhou, X.M. and Hu, G.K., Analytic model of elastic metamaterials with local resonances. Physical Review B, 2009, 79: 195109.CrossRefGoogle Scholar
  103. [103]
    Smith, D.R. and Pendry, J.B., Homogenization of metamaterials by field averaging (invited paper). Journal of the Optical Society of America B, 2006, 23: 391–403.CrossRefGoogle Scholar
  104. [104]
    Gao, H., Ji, B., Jager, I.L., Arzt, E. and Fratzl, P., Materials become insensitive to flaws at nanoscale: Lessons from nature. Proceedings of National Academy of Science of the United States of America, 2003, 100: 5597–5600.CrossRefGoogle Scholar
  105. [105]
    Ji, B. and Gao, H., Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 2004, 52: 1963–1990.zbMATHCrossRefGoogle Scholar
  106. [106]
    Gao, H., Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. International Journal of Fracture, 2006, 138: 101–137.zbMATHCrossRefGoogle Scholar
  107. [107]
    Song, F., Soh, A.K. and Bai, Y.L., Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials, 2003, 24: 3622–3631.CrossRefGoogle Scholar
  108. [108]
    Song, F, Zhou, J.B., Xu, X.H., Xu, Y. and Bai, Y.L., Effect of a negative Poisson ratio in the tension of ceramics. Physical Review Letters, 2008, 100: 245502.CrossRefGoogle Scholar
  109. [109]
    Dai, Z.D. and Yang, Z.X., Macro-/micro-structures of elytra, mechanical properties of the biomaterial and the coupling strength between elytra in beetles. Journal of Bionic Engineering, 2010, 7: 6–12.CrossRefGoogle Scholar
  110. [110]
    Yang, Z.X., Dai, Z.D. and Guo, C., Morphology and mechanical properties of Cybister elytra. Chinese Science Bulletin, 2010, 54: 771–776.CrossRefGoogle Scholar
  111. [111]
    Dai, Z.D., Zhang, Y.F., Liang, X.C. and Sun, J.R., Coupling between elytra of some beetles: Mechanism, forces and effects of surface texture. Science in China Series C: Life Sciences, 2008, 51: 894–901.Google Scholar
  112. [112]
    Kong, X.Q. and Wu, C.W., Mosquito proboscis: An elegant biomicroelectromechanical system. Physical Review E, 2010, 82: 011910.CrossRefGoogle Scholar
  113. [113]
    Zhao, H.P., Feng, X.Q., Yu, S.W., Cui, W.Z. and Zou, F.Z., Mechanical properties of silkworm cocoons. Polymer, 2005, 46: 9192–9201.CrossRefGoogle Scholar
  114. [114]
    Zhao, H.P. and Feng, X.Q., Variability in mechanical properties of Bombyx mori silk, Materials Science and Engineering C—Biomimetic and Supramolecular Systems, 2007, 27: 675–683.CrossRefGoogle Scholar
  115. [115]
    Li, B.W., Zhao, H.P., Feng, X.Q., Guo, W.W. and Shan S.C., Experimental study on the mechanical properties of the horn sheaths from cattle. Journal of Experimental Biology, 2010, 213: 479–486.CrossRefGoogle Scholar
  116. [116]
    Zhao, J., Chen, C., Liang, Y. and Wang, J., Mechanical properties and structure of Haliotis discus hannai Ino and Hemifusus tuba conch shells: a comparative study. Acta Mechanica Sinica, 2010, 26: 21–25.CrossRefGoogle Scholar
  117. [117]
    Zhang, K., Si, F.W., Duan, H.L. and Wang, J., Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomaterialia, 2010, 6: 2165–2171.CrossRefGoogle Scholar
  118. [118]
    Liu, B., Zhang, L. and Gao, H., Poisson ratio can play a crucial role in mechanical properties of biocomposites. Mechanics of Materials, 2006, 38: 1128–1142.CrossRefGoogle Scholar
  119. [119]
    Liu, B., Feng, X. and Zhang, S.M., The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect. Composites Science and Technology, 2009, 69: 2198–2204.CrossRefGoogle Scholar
  120. [120]
    Joly, L. and Biben, T., Wetting and friction on superoleophobic surfaces. Soft Matter, 2009, 5: 2549–2557.Google Scholar
  121. [121]
    Rothstein, J.P., Slip on superhydrophobic surfaces. Annual Review of Fluid Mechanics, 2010, 42: 89–109.CrossRefGoogle Scholar
  122. [122]
    Zheng, Q.S., Yu, Y., and Zhao, Z.H., Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir, 2005, 21: 12207–12212.CrossRefGoogle Scholar
  123. [123]
    Liu, H, Li, S.H., Zhai, J., Li, H.J., Zheng, Q.S., Jiang, L. and Zhu, D.B., Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angewandte Chemie-International Edition, 2004, 43: 1146–1149.CrossRefGoogle Scholar
  124. [124]
    Yu, Y., Zhao, Z.H., Zheng, Q.S., Mechanical and superhydrophobic stabilities of two-scale surfacial structure of lotus leaves. Langmuir, 2007, 23: 8212–8216.CrossRefGoogle Scholar
  125. [125]
    Zheng, Q.S., Lv, C.J., Hao, P.F. and Sheridan, J, Small is beautiful, and dry. Science China—Physics, Mechanics & Astronomy, 2010, 53: 2245–2259.CrossRefGoogle Scholar
  126. [126]
    Li, W. and Amirfazli, A., Superhydrophobic surfaces: Adhesive strongly to water? Advanced Materials, 2007, 19: 3421–3422.CrossRefGoogle Scholar
  127. [127]
    Su, Y.W., Ji, B.H., Huang, Y.G. and Hwang, K., Nature’s design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation. Langmuir, 2010, 6: 18926–18937.CrossRefGoogle Scholar
  128. [128]
    Su, Y.W., Ji, B.H., Zhang, K., Gao, H.J., Huang, Y.G. and Hwang, K., Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces. Langmuir, 2010, 26: 4984–4989.CrossRefGoogle Scholar
  129. [129]
    Wu, C.W., Kong, X.Q. and Wu, D., Micronanostructures of the scales on a mosquito’s leg and their role in weight support. Physical Review E, 2007, 76: 017301CrossRefGoogle Scholar
  130. [130]
    Feng, X.Q., Gao, X.F., Wu, Z.N., Jiang, L. and Zheng, Q.S., Superior water repellence of water strider legs with hierarchical structures: experiments and analysis. Langmuir, 2007, 23: 4892–4896.CrossRefGoogle Scholar
  131. [131]
    Arzt, E., Gorb, S. and Spolenak, R., From micro to nano contacts in biological attachment devices. Proceedings of National Academy of Science of the United States of America, 2003, 100: 10603–10606.CrossRefGoogle Scholar
  132. [132]
    Gao, H. and Yao, H., Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proceedings of National Academy of Science of the United States of America, 2004, 101: 7851–7856.CrossRefGoogle Scholar
  133. [133]
    Gao, H. and Chen, S.H., Flaw tolerance in a thin strip under tension. Journal of Applied Mechanics, 2005, 72: 732–737.zbMATHCrossRefGoogle Scholar
  134. [134]
    Chen, S.H. and Gao, H., Non-slipping adhesive contact of an elastic cylinder on stretched substrates. Proceedings of The Royal Society A—Mathematical Physical and Engineering Sciences, 2006, 462: 211–228.MathSciNetzbMATHCrossRefGoogle Scholar
  135. [135]
    Chen, S.H. and Gao, H., Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. Journal of the Mechanics and Physics of Solids, 2007, 55: 1001–1015.zbMATHCrossRefGoogle Scholar
  136. [136]
    Chen, S.H., Yan, C. and Soh, A.K., Non-slipping JKR model for transversely isotropic materials. International Journal of Solids and Structure, 2008, 45: 676–687.zbMATHCrossRefGoogle Scholar
  137. [137]
    Chen, S.H., Yan, C., Zhang, P. and Gao, H., Mechanics of adhesive contact on a power-law elastic half-space. Journal of the Mechanics and Physics of Solids, 2009, 57: 1434–1448.MathSciNetzbMATHGoogle Scholar
  138. [138]
    Chen, S.H., Xu, G. and Soh, A.K., Size-dependent adhesion strength of a single viscoelastic fiber. Tribology Letters, 2010, 37: 375–379.CrossRefGoogle Scholar
  139. [139]
    Peng, X., Pi, W. and Fan, J., A Microstructure-damage-based description for the size effect of the constitutive behavior of pearlitic steels. International Journal of Damage Mechanics, 2010, 19: 821–849.CrossRefGoogle Scholar
  140. [140]
    Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L. and Djafarirouhani, B., Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71: 2022–2025.CrossRefGoogle Scholar
  141. [141]
    Liu, Z.Y., Zhang, X.X., Mao, Y, W., Zhu, Z.Z., Yang, Z.Y., Chan, C.T. and Sheng, P., Locally resonant sonic materials. Science, 2000, 289: 1734–1736.CrossRefGoogle Scholar
  142. [142]
    Bliokh, K.Y. and Freilikher, V.D., Localization of transverse waves in randomly layered media at oblique incidence. Physical Review B, 2004, 70: 245121.CrossRefGoogle Scholar
  143. [143]
    Chen, A.L. and Wang, Y.S., Study on band gaps of elastic waves propagating in one dimensional disordered phononic crystals. Physica B, 2007, 392: 369–378.CrossRefGoogle Scholar
  144. [144]
    Goffaux, C. and Vigneron, J.P., Theoretical study of a tunable phononic band gap system. Physical Review B, 2001, 64: 075118.CrossRefGoogle Scholar
  145. [145]
    Yan, Z.Z. and Wang, Y.S., Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method. Physical Review B, 2008, 78: 094306.CrossRefGoogle Scholar
  146. [146]
    Yan, Z.Z. and Wang, Y.S., Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Physical Review B, 2006, 74: 224303.CrossRefGoogle Scholar
  147. [147]
    Kafesaki, M. and Economou, E.N., Multiple-scattering theory for three-dimensional periodic acoustic composites. Physical Review B, 1999, 60: 11993–12001.CrossRefGoogle Scholar
  148. [148]
    Wang, G., Wen, J.H., Liu, Y.Z. and Wen, X.S., Lumped-mass method for the study of band structure in two-dimensional phononic crystals. Physical Review B, 2004, 69: 184302.CrossRefGoogle Scholar
  149. [149]
    Tanaka, Y. and Tomoyasu, Y., Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch. Physical Review B, 2000, 62: 7387–7392.CrossRefGoogle Scholar
  150. [150]
    Zhou, X.Z., Wang, Y.S. and Zhang, Ch., Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals. Journal of Applied Physics, 2009, 106: 014903.CrossRefGoogle Scholar
  151. [151]
    Kushwaha, M.S. and Halevi, P., Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders. Applied Physics Letters, 1996, 69: 31–33.CrossRefGoogle Scholar
  152. [152]
    Chen, A.L., Wang, Y.S., Li, J.B. and Zhang, Ch., Localization of elastic waves in two-dimensional randomly disordered solid phononic crystals. Waves in Random and Complex Media, 2010, 20: 104–121.zbMATHCrossRefGoogle Scholar
  153. [153]
    Chen, A.L., Wang, Y.S., Guo, Y.F. and Wang, Z.D., Band structures of Fibonacci phononic quasicrystals. Solid State Communications, 2008, 145: 103–108.CrossRefGoogle Scholar
  154. [154]
    Li, Y., Hou, Z.L., Fu, X.J. and Assouar, B.M., Symmetric and anti-symmetric Lamb waves in a two-dimensional phononic crystal plate. Chinese Physics Letters, 2010, 27: 074303.CrossRefGoogle Scholar
  155. [155]
    Psarobas, I.E., Stefanou, N. and Modinos, A., Phononic crystals with planar defects. Physical Review B, 2000, 62: 5536–5540.CrossRefGoogle Scholar
  156. [156]
    Benchabane, S., Khelif, A., Choujaa, A., Djafari-Rouhani, B. and Laude, V., Interaction of waveguide and localized modes in a phononic crystal. Europhysics Letters, 2005, 71: 570–575.CrossRefGoogle Scholar
  157. [157]
    Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O. and Larabi, H., Acoustic channel drop tunneling in a phononic crystal. Applied Physics Letters, 2005, 87: 261912.CrossRefGoogle Scholar
  158. [158]
    Pennec, Y., Djafari-Rouhani, B., Vasseur, J.O., Khelif, A. and Deymier, P.A., Tunable filtering and demultiplexing in phononic crystals with hollow cylinders. Physical Review E, 2004, 69: 046608.CrossRefGoogle Scholar
  159. [159]
    Page, J.H., Sheng, P., Schriemer, H.P., Jones, I., Jing, X.D. and Weitz, D.A., Group velocity in strongly scattering media. Science, 1996, 271: 634–637.CrossRefGoogle Scholar
  160. [160]
    Torres, M. and Montero de Espinosa, F.R., Ultrasonic band gaps and negative refraction. Ultrasonics, 2004, 42: 787–790.CrossRefGoogle Scholar
  161. [161]
    Fang, N., Xi, D.J., Xu, J.Y., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X., Ultrasonic metamaterials with negative modulus, Nature Materials, 2006, 5: 452–456.CrossRefGoogle Scholar
  162. [162]
    Mei, J., Liu, Z.Y., Wen, W.J. and Sheng, P., Effective mass density of fluid-solid composites. Physical Review Letters, 2006, 96: 024301.CrossRefGoogle Scholar
  163. [163]
    Hsu, F.C., Wu, T.T., Hsu, J.C. and Sun, J.H., Directional enhanced acoustic radiation caused by a point cavity in a finite-size two-dimensional phononic crystal. Applied Physics Letters, 2008, 93: 201904.CrossRefGoogle Scholar
  164. [164]
    Liu, W. and Su, X.Y., Collimation and enhancement of elastic transverse waves in two-dimensional solid phononic crystals. Physics Letters A, 2010, 374: 2968–2971.CrossRefGoogle Scholar
  165. [165]
    Farthat, M., Guenneau, S., Enoch, S. and Movchan, A.B., Negative reflection, surface modes, and supperlensing effect via homogenization near resonances for a finite array of split-ring resonators. Physical Review E, 2009, 80: 046309.CrossRefGoogle Scholar
  166. [166]
    Farhat, M., Enoch, S., Guenneau, S. and Movchan, A.B., Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Physical Review Letters, 2008, 101: 134501.CrossRefGoogle Scholar
  167. [167]
    Torrent, D. and Sánchez-Dehesa, J., Acoustic metamaterials for new two-dimensional sonic devices. New Journal of Physics, 2007, 9: 323.CrossRefGoogle Scholar
  168. [168]
    Lin, S.C.S. and Huang, T.J., Acoustic mirage in two-dimensional gradient-index phononic crystals. Journal of Applied Physics, 2009, 106: 053529.CrossRefGoogle Scholar
  169. [169]
    Qiu, C.Y., Liu, Z.Y., Mei, J. and Shi, J., Mode-selecting acoustic filter by using resonant tunneling. Applied Physics Letters, 2005, 87: 104101.CrossRefGoogle Scholar
  170. [170]
    Lucklum, R. and Li, J., Phononic crystals for liquid sensor applications. Measurement Science and Technology, 2009, 20: 124014.CrossRefGoogle Scholar
  171. [171]
    Gonella, S., To, A.C. and Liu, W.K., Interplay between phononic band gaps and piezoelectric microstructures for energy harvesting. Journal of the Mechanics and Physics of Solids, 2009, 57: 621–633.zbMATHCrossRefGoogle Scholar
  172. [172]
    Gillet, J.N., Chalopin, Y. and Volz, S., Atomic-scale three-dimensional phononic crystals with a very low thermal conductivity to design crystalline thermoelectric devices. Journal of Heat Transfer, 2009, 131: 043206.CrossRefGoogle Scholar
  173. [173]
    Wang, Y.Z., Li, F.M., Kishimoto, K., Wang, Y.S. and Huang, W.H., Band gap behaviors of periodic magnetoelectroelastic composite structures with Kagome lattices. Waves in Random and Complex Media, 2009, 19: 509–520.zbMATHCrossRefGoogle Scholar
  174. [174]
    Robillard, J. F., Matar, O.B., Vasseur, J.O., Deymier, P.A., Stippinger, M., Hladky-Hennion, A.C., Pennec, Y. and Djafari-Rouhani, B., Tunable magnetoelastic phononic crystals. Applied Physics Letters, 2009, 95: 124104.CrossRefGoogle Scholar
  175. [175]
    Jim, K.L., Leung, C.W., Lau, S.T., Choy, S.H. and Chan, H.L.W., Thermal tuning of phononic bandstructure in ferroelectric ceramic/epoxy phononic crystal. Applied Physics Letters, 2009, 94: 193501.CrossRefGoogle Scholar
  176. [176]
    Yang, W.P. and Chen, L.W., The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator. Smart Materials & Structures, 2008, 17: 015011.CrossRefGoogle Scholar
  177. [177]
    Romero-García, V., Sánchez-Pérez, J.V., García-Raffi, L.M., Herrero, J.M., Garcia-Nieto, S. and Blasco, X., Hole distribution in phononic crystals: design and optimization. The Journal of the Acoustical Society of America, 2009, 125: 3774–3783.CrossRefGoogle Scholar
  178. [178]
    Su, M.F., Olsson, R.H. and Leseman, Z.C., El-Kady I. Realization of a phononic crystal operating at gigahertz frequencies. Applied Physics Letters, 2010, 96: 053111.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2011

Authors and Affiliations

  • C. Q. Chen
    • 1
  • J. Z. Cui
    • 2
  • H. L. Duan
    • 3
  • X. Q. Feng
    • 1
  • L. H. He
    • 4
  • G. K. Hu
    • 5
  • M. J. Huang
    • 6
  • Y. Z. Huo
    • 7
  • B. H. Ji
    • 5
  • B. Liu
    • 1
  • X. H. Peng
    • 8
  • H. J. Shi
    • 1
  • Q. P. Sun
    • 9
  • J. X. Wang
    • 3
  • Y. S. Wang
    • 10
  • H. P. Zhao
    • 1
  • Y. P. Zhao
    • 11
  • Q. S. Zheng
    • 1
  • W. N. Zou
    • 6
  1. 1.Department of Engineering Mechanics, AMLTsinghua UniversityBeijingChina
  2. 2.Academy of Mathematics and Systems SciencesChinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory for Turbulence and Complex System and Department of Mechanics and Aerospace Engineering, College of EngineeringPeking UniversityBeijingChina
  4. 4.CAS Key Laboratory of Mechanical Behavior and Design of MaterialsUniversity of Science and Technology of ChinaHefei, AnhuiChina
  5. 5.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  6. 6.Institute for Advanced StudyNanchang UniversityNanchangChina
  7. 7.Department of Mechanics and Engineering SciencesFudan UniversityShanghaiChina
  8. 8.Department of Engineering MechanicsChongqing UniversityChongqingChina
  9. 9.Department of Mechanical EngineeringHong Kong University of Science and TechnologyHong KongChina
  10. 10.Institute of Engineering MechanicsBeijing Jiaotong UniversityBeijingChina
  11. 11.State Key Laboratory of Nonlinear MechanicsInstitute of Mechanics, Chinese Academy of SciencesBeijingChina

Personalised recommendations