Skip to main content
Log in

Decay Rate of Saint-Venant end Effects for Plane Deformations oF Piezoelectric-Piezomagnetic Sandwich Structures

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This paper is concerned with the decay of Saint-Venant end effects for plane deformations of piezoelectric (PE)-piezomagnetic (PM) sandwich structures, where a PM layer is located between two PE layers with the same material properties or reversely. The end of the sandwich structure is subjected to a set of self-equilibrated magneto-electro-elastic loads. The upper and lower surfaces of the sandwich structure are mechanically free, electrically open or shorted as well as magnetically open or shorted. Firstly the constitutive equations of PE materials and PM materials for plane strain are given and normalized. Secondly, the simplified state space approach is employed to arrange the constitutive equations into differential equations in a matrix form. Finally, by using the transfer matrix method, the characteristic equations for eigenvalues or decay rates are derived. Based on the obtained characteristic equations, the decay rates for the PE-PM-PE and PM-PE-PM sandwich structures are calculated. The influences of the electromagnetic boundary conditions, material properties of PE layers and volume fraction on the decay rates are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiebig, M., Revival of the magnetoelectric effect. Journal of Physics. D:Applied Physics, 2005, 38: R123–R152.

    Article  Google Scholar 

  2. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D. and Srinvasan, G., Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of Applied Physics, 2008, 103: 031101.

    Article  Google Scholar 

  3. Jiang, A.M. and Ding, H.J., Analytical solutions to magneto-electro-elastic beams. Structural Engineering and Mechanics, 2004, 18: 195–209.

    Article  Google Scholar 

  4. Heyliger, P.R., Ramirez, F. and Pan, E., Two-dimensional static fields in magnetoelectroelastic laminates. Journal of Intelligent Material Systems and Structures, 2004, 15: 689–709.

    Article  Google Scholar 

  5. Chen, J.Y., Chen, H.L. and Pan, E., Free vibration of functionally graded, magneto-electro-elastic, and multilayered plates. Acta Mechanica Solida Sinica, 2006, 19: 160–166.

    Article  Google Scholar 

  6. Bhangale, R.K. and Ganesan, N., Free vibration of functionally graded non-homogeneous magneto-electro-elastic cylindrical shell. International Journal of Computational Methods in Engineering Science and Mechanics, 2006, 7: 191–200.

    Article  Google Scholar 

  7. Liu, J.X., Liu, X.L. and Zhao, Y.B., Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. International Journal of Engineering Science, 2001, 39: 1405–1418.

    Article  Google Scholar 

  8. Liu, J.X., Soh, A.K. and Fang, D.N., A moving dislocation in a magneto-electro-elastic solid. Mechanics Research Communications, 2005, 32: 504–513.

    Article  MathSciNet  Google Scholar 

  9. Wang, B.L. and Mai, Y.W., Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials. International Journal of Solids and Structures, 2007, 44: 387–398.

    Article  Google Scholar 

  10. Garcia-Sanchez, F., Rojas-Diaz, R., Saez, A. and Zhang, Ch., Fracture of magnetoelectroelastic composite materials using boundary element method (BEM). Theoretical and Applied Fracture Mechanics, 2007, 47: 192–204.

    Article  Google Scholar 

  11. Fan, C.Y., Zhou, Y.H., Wang, H. and Zhao, M.H., Singular behaviors of interfacial cracks in 2D magnetoelectroelastic bimaterials. Acta Mechanica Solida Sinica, 2009, 22: 232–239.

    Article  Google Scholar 

  12. Li, G., Wang, B.L., Han, J.C. and Du, S.Y., Anti-plane analysis for elliptical inclusion in magnetoelectroelastic materials. Acta Mechanica Solida Sinica, 2009, 22: 137–142.

    Article  Google Scholar 

  13. Soh, A.K. and Liu, J.X., Interfacial shear horizontal waves in a piezoelectric-piezomagnetic bi-material. Philosophical Magazine Letters, 2006, 81: 31–35.

    Article  Google Scholar 

  14. Chen, J.Y., Pan, E. and Chen, H.L., Wave propagation in magneto-electro-elastic multilayered plates. International Journal of Solids and Structures, 2007, 44: 1073–1085.

    Article  Google Scholar 

  15. Wei, J.P. and Su, X.Y., Transient-state response of wave propagation in magneto-electro-elastic square column. Acta Mechanica Solida Sinica, 2008, 21: 491–499.

    Article  Google Scholar 

  16. Melkumyan, A. and Mai, Y.W., Influence of imperfect bonding on interface waves guided by piezoelectric/piezomagnetic composites. Philosophical Magazine, 2008, 88: 2965–2977.

    Article  Google Scholar 

  17. Horgan, C.O., Recent development concerning Saint-Venant’s principle: An update. Applied Mechanics Review, 1989, 42: 295–303.

    Article  MathSciNet  Google Scholar 

  18. Horgan, C.O., Recent developments concerning Saint-Venant’s principle: A second update. Applied Mechanics Reviews, 1996, 49: S101–S111.

    Article  Google Scholar 

  19. Batra, R.C. and Yang, J.S., Saint-Venant’s principle in linear piezoelectricity. Journal of Elasticity, 1994, 38: 209–218.

    Article  MathSciNet  Google Scholar 

  20. Fan, H., Decay rates in a piezoelectric strip. International Journal of engineering science, 1995, 33: 1095–1103.

    Article  MathSciNet  Google Scholar 

  21. Bisegna, P., The Saint-Venant problem for monoclinic piezoelectric cylinders. Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 1998, 18: 147–165.

    Article  MathSciNet  Google Scholar 

  22. Ruan, X.P., Danforth, S.C., Safari, A. and Chou, T., Saint-Venant end effects in piezoceramic materials. International Journal of Solids and Structures, 2000, 37: 2625–2637.

    Article  MathSciNet  Google Scholar 

  23. Tam, J.Q. and Huang, L.J., Saint-Venant end effects in multilayered piezoelectric laminates. International Journal of Solids and Structures, 2002, 39: 4979–4998.

    Article  MathSciNet  Google Scholar 

  24. Liu, C.W. and Taciroglu, E., Numerical analysis of end effects in laminated piezoelectric circular cylinders. Computer Methods in Applied Mechanics and Engineering, 2007, 196: 2173–2186.

    Article  Google Scholar 

  25. Borrelli, A., Horgan, C.O. and Patria, M.C., Saint-Venant end effects in anti-plane shear for classes of linear piezoelectric materials. Journal of Elasticity, 2001, 64: 217–236.

    Article  MathSciNet  Google Scholar 

  26. Borrelli, A., Horgan, C.O. and Patria, M.C., Saint-Venant’s principle for anti-plane shear deformations of linear piezoelectric materials. SIAM Journal on Applied Mathematics, 2002, 62: 2027–2044.

    Article  MathSciNet  Google Scholar 

  27. Borrelli, A., Horgan, C.O. and Patria, M.C., End effects for pre-stressed and pre-polarized piezoelectric solids in anti-plane shear. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 2003, 54: 797–806.

    Article  MathSciNet  Google Scholar 

  28. Borrelli, A., Horgan, C.O. and Patria, M.C., Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials. Proceedings of the Royal Society of London, Series A, 2004, 460: 1193–1212.

    Article  MathSciNet  Google Scholar 

  29. Ramirez, F., Heyliger, P.R. and Pan, E., Free vibration response of two-dimensional magneto-electro-elastic laminated plates. Journal of Sound and Vibration, 2006, 292: 626–644.

    Article  Google Scholar 

  30. Baxter, S.C. and Horgan, C.O., Anti-plane shear deformations of anisotropic sandwich structures: End effects. International Journal of Solids and Structures, 1997, 34: 79–98.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxi Liu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 10972147).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, Y., Liu, J. Decay Rate of Saint-Venant end Effects for Plane Deformations oF Piezoelectric-Piezomagnetic Sandwich Structures. Acta Mech. Solida Sin. 23, 407–419 (2010). https://doi.org/10.1016/S0894-9166(10)60043-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(10)60043-2

Key words

Navigation