Acta Mechanica Solida Sinica

, Volume 23, Issue 4, pp 283–296 | Cite as

Analysis of Nanobridge Tests

  • Wing Kin Chan
  • Jianrong Li
  • Yong Wang
  • Shengyao Zhang
  • Tongyi Zhang


This paper analyzes nanobridge tests with consideration of adhesive contact deformation, which occurs between a probe tip and a tested nanobeam, and deformation of a substrate or template that supports the tested nanobeam. Analytical displacement-load relation, including adhesive contact deformation and substrate deformation, is presented here for small deformation of bending. The analytic results are confirmed by finite element analysis. If adhesive contact deformation and substrate deformation are not considered in the analysis of nanobridge test data, they might lead to lower values of Young’s modulus of tested nanobeams.

Key words

nanobridge tests size-dependency adhesion contact compliance surface effect substrate effect finite element 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F. and Yan, Y.Q., One-dimensional nanostructures: Synthesis, characterization and applications. Advanced Materials, 2003, 15(5): 353–389.CrossRefGoogle Scholar
  2. [2]
    Salvetat, J.P., Briggs, G.A.D., Bonard, J.M., Bacsa, R.R., Kulik, A.J., Stockli, T., Burnham, N.A. and Forro, L., Elastic and shear moduli of single-walled carbon nanotube ropes. Physical Review Letters, 1999, 82(5): 944–947.CrossRefGoogle Scholar
  3. [3]
    Cuenot, S., Demoustier-Champagne, S. and Nysten, B., Elastic modulus of polypyrrole nanotubes. Physical Review Letters, 2000, 85(8): 1690–1693.CrossRefGoogle Scholar
  4. [4]
    Kis, A., Kasas, S., Babic, B., Kulik, A.J., Benoit, W., Briggs, G.A.D., Schonenberger, C., Catsicas, S. and Forro, L., Nanomechanics of microtubules. Physical Review Letters, 2002, 89(24): 248101.CrossRefGoogle Scholar
  5. [5]
    Wu, B., Heidelberg, A. and Boland, J.J., Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 2005, 4: 525–529.CrossRefGoogle Scholar
  6. [6]
    Xiong, Q.H., Duarte, N., Tadigadapa, S. and Eklund, P.C., Force-deflection spectroscopy: A new method to determine the Young’s modulus of nanofilaments. Nano Letters, 2006, 6(9): 1904–1909.CrossRefGoogle Scholar
  7. [7]
    Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X. and Yu, D.P., Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Physical Review B, 2006, 73(23): 235409.CrossRefGoogle Scholar
  8. [8]
    Ni, H., Li, X.D., Cheng, G.S. and Klie, R., Elastic modulus of single-crystal GaN nanowires. Journal of Materials Research, 2006, 21(11): 2882–2887.CrossRefGoogle Scholar
  9. [9]
    Chen, Y.X., Dorgan, B.L., McIlroy, D.N. and Aston, D.E., On the importance of boundary conditions on nanomechanical bending behavior and elastic modulus determination of silver nanowires. Journal of Applied Physics, 2006, 100(10): 104301.CrossRefGoogle Scholar
  10. [10]
    Ni, H. and Li, X.D., Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology, 2006, 17(14): 3591–3597.CrossRefGoogle Scholar
  11. [11]
    Chen, Y.X., Stevenson, I., Pouy, R., Wang, L.D., McIlroy, D.N., Pounds, T., Norton, M.G. and Aston, D.E., Mechanical elasticity of vapour-liquid-solid grown GaN nanowires. Nanotechnology, 2007, 18(13): 135708.CrossRefGoogle Scholar
  12. [12]
    Varghese, B., Zhang, Y.S., Dai, L., Tan, V.B.C., Lim, C.T. and Sow, C.H., Structure-Mechanical property of individual cobalt oxide nanowires. Nano Letters, 2008, 8(10): 3226–3232.CrossRefGoogle Scholar
  13. [13]
    Manoharan, M.P., Desai, A.V., Neely, G. and Haque, M.A., Synthesis and elastic characterization of zinc oxide nanowires. Journal of Nanomaterials, 2008: 849745.Google Scholar
  14. [14]
    Huang, H.Y., Li, Z.Y., Lu, J.Y., Wang, Z.J., Wang, C.S., Lau, K.M., Chen, K.J. and Zhang, T.Y., Microbridge tests on gallium nitride thin films. Journal of Micromechanics and Microengineering, 2009, 19(9): 095019.CrossRefGoogle Scholar
  15. [15]
    Zhang, T.Y., Su, Y.J., Qian, C.F., Zhao, M.H. and Chen, L.Q., Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta Materialia, 2000, 48(11): 2843–2857.CrossRefGoogle Scholar
  16. [16]
    Zhang, T.Y., Microbridge tests. In: Micro and Nano Mechanical Testing of Materials and Devices, Yang, F.Q. and Li, J.C.M. Editors. Springer Science+Business Media, LLC. 2008: 215–285.CrossRefGoogle Scholar
  17. [17]
    Gao, H.J. and Yao, H.M., Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(21): 7851–7856.CrossRefGoogle Scholar
  18. [18]
    Sirghi, L. and Rossi, F., Adhesion and elasticity in nanoscale indentation. Applied Physics Letters, 2006, 89(24): 243118.CrossRefGoogle Scholar
  19. [19]
    Johnson, K.L., Kendall, K. and Roberts, A.D., Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1971, 324(1558): 301–313.CrossRefGoogle Scholar
  20. [20]
    Derjaguin, B.V., Muller, V.M. and Toporov, Y.P., Effect of contact deformations on adhesion of particles. Journal of Colloid and Interface Science, 1975, 53(2): 314–326.CrossRefGoogle Scholar
  21. [21]
    Maugis, D., Adhesion of spheres — The JKR-DMT transition using a Dugdale model. Journal of Colloid and Interface Science, 1992, 150(1): 243–269.CrossRefGoogle Scholar
  22. [22]
    Baker, S.P. and Nix, W.D., Mechanical properties of compositionally modulated Au-Ni Thin-films — Nanoindentation and Microcantilever deflection experiments. Journal of Materials Research, 1994, 9(12): 3131–3145.CrossRefGoogle Scholar
  23. [23]
    Wong, E.W., Sheehan, P.E. and Lieber, C.M., Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotubes. Science, 1997, 277(5334): 1971–1975.CrossRefGoogle Scholar
  24. [24]
    Zeng, D.J. and Zheng, Q.S., Resonant frequency-based method for measuring the Young’s moduli of nanowires. Physical Review B, 2007, 76(7): 075417.CrossRefGoogle Scholar
  25. [25]
    Zhou, P., Wu, C.W. and Li, X.D., Three-point bending Young’s modulus of nanowires. Measurement Science & Technology, 2008, 19(11): 115703–115707.CrossRefGoogle Scholar
  26. [26]
    Johnson, K.L., Contact Mechanics. Cambridge: Cambridge University Press, 1985.CrossRefGoogle Scholar
  27. [27]
    Zhang, T.Y., Zhao, M.H. and Qian, C.F., Effect of substrate deformation on the microcantilever beam-bending test. Journal of Materials Research, 2000, 15(9): 1868–1871.CrossRefGoogle Scholar
  28. [28]
    Xu, W.H. and Zhang, T.Y., Mechanical characterization of trilayer thin films by the microbridge testing method. Applied Physics Letters, 2003, 83(9): 1731–1733.CrossRefGoogle Scholar
  29. [29]
    Cuenot, S., Fretigny, C., Demoustier-Champagne, S. and Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B, 2004, 69(16): 165410.CrossRefGoogle Scholar
  30. [30]
    Zhang, T.Y., Luo, M. and Chan, W.K., Size-dependent surface stress, surface stiffness and Young’s modulus of hexagonal prism [111] beta-SiC nanowires. Journal of Applied Physics, 2008, 103(10): 104308.CrossRefGoogle Scholar
  31. [31]
    Chan, W.K., Luo, M. and Zhang, T.Y., Molecular dynamics simulations of four-point bending tests on SiC nanowires. Scripta Materialia, 2008, 59(7): 692–695.CrossRefGoogle Scholar
  32. [32]
    Zhang, T.Y., Wang, Z.J. and Chan, W.K., Eigenstress model for surface stress of solids. Physical Review B, 2010, 81(19): 195427.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2010

Authors and Affiliations

  • Wing Kin Chan
    • 1
  • Jianrong Li
    • 1
  • Yong Wang
    • 1
  • Shengyao Zhang
    • 1
  • Tongyi Zhang
    • 1
  1. 1.Department of Mechanical EngineeringHong Kong University of Science and TechnologyKowloon, Hong KongChina

Personalised recommendations