Acta Mechanica Solida Sinica

, Volume 22, Issue 5, pp 377–390 | Cite as

Micromechanics of Rough Surface Adhesion: A Homogenized Projection Method

  • Qunyang LiEmail author
  • Kyung-Suk Kim


A quasistatic homogenized projection is made to characterize the effective cohesive zone behavior for rough-surface adhesion. In the context of the homogenized projection, the traction versus separation relation for the homogenized cohesive zone (HCZ) of a rough interface can be highly oscillatory due to instabilities during microscopic adhesion and decohesion processes. The instabilities are found to occur not only individually but also collectively among the adhesive micro-asperity contacts, leading to extensive energy dissipation. Based on the behaviors of the HCZ relations, a framework for describing instability-induced energy dissipation in rough-surface adhesion is proposed to elucidate the effect of roughness on apparent interface adhesion. Two non-dimensional parameters, α related to roughness morphology and n related to flaw distribution, are identified to be most crucial for controlling the energy dissipation. For an interface with a shallow roughness and a strong intrinsic adhesive strength, the interface adhesion can be stronger if we make it rougher (reducing α) or lower its flaw density (increasing n). The HCZ projection method can be potentially extended and employed to bridge the apparent adhesion from intrinsic adhesion properties for engineering surfaces with multi-scale shallow roughness.

Key words

homogenized cohesive zone interface adhesion roughness effect instability energy dissipation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adams, R.D., Comyn, J. and Wake, W.C., Structural Adhesive Joints in Engineering (2nd Edition). London: Chapman & Hall, 1997.Google Scholar
  2. [2]
    Maboudian, R. and Howe, R.T., Critical review: adhesion in surface micromechanical structures. The Journal of Vacuum Science and Technology B, 1997, 15(1): 1–20.CrossRefGoogle Scholar
  3. [3]
    Hjortso, M.A. and Roos, J.W., Cell Adhesion: Fundamentals and Biotechnological Applications. Boca Raton, FL: CRC Press, 1994.Google Scholar
  4. [4]
    Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996, 84: 345–357.CrossRefGoogle Scholar
  5. [5]
    Lane, M., Interface fracture. Annual Review of Materials Research, 2003, 33: 29–54.CrossRefGoogle Scholar
  6. [6]
    Zhao, Y.-P., Wang, L.S. and Yu, T.X., Mechanics of adhesion in MEMS — A review. Journal of Adhesion Science and Technology, 2003, 17(4): 519–546.CrossRefGoogle Scholar
  7. [7]
    Buckley, C.D., Rainger, G.E., Bradfield, P.F., Nash, G.B. and Simmons, D.L., Cell adhesion: more than just glue (review). Molecular Membrane Biology, 1998, 15: 167–176.CrossRefGoogle Scholar
  8. [8]
    Israelachvili, J.N., Intermolecular and Surface Forces. (2nd Edition). London: Academic Press, 1992.Google Scholar
  9. [9]
    Leckband, D. and Israelachvili, J.N., Intermolecular forces in biology. Quarterly Review of Biophysics, 2001, 34(2): 105–267.CrossRefGoogle Scholar
  10. [10]
    Persson, B.N.J., Contact mechanics for randomly rough surfaces. Surface Science Reports, 2006, 61: 201–227.CrossRefGoogle Scholar
  11. [11]
    Persson, B.N.J., Adhesion between an elastic body and a randomly rough hard surface. The European Physical Journal E, 2002, 8: 385–401.CrossRefGoogle Scholar
  12. [12]
    Brown, H.R., The adhesion between polymers. Annual Review of Materials Science, 1991, 21: 463–489.CrossRefGoogle Scholar
  13. [13]
    Evans, A.G., Hutchinson, J.W. and Wei, Y., Interface adhesion: effects of plasticity and segregation. Acta Materialia, 1999, 47(15–16): 4093–4113.CrossRefGoogle Scholar
  14. [14]
    Barenblatt, G.I., The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962, 7: 55–129.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Needleman, A., A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 1987, 54(3): 525–531.CrossRefGoogle Scholar
  16. [16]
    Camacho, G.T. and Ortiz, M., Computational modeling of impact damage in brittle materials. International Journal of Solids and Structures, 1996, 33(20–22): 2899–2938.CrossRefGoogle Scholar
  17. [17]
    Xia, S., Qi, Y., Perry, T. and Kim, K.-S., Strength characterization of Al/Si interfaces: A hybrid method of nanoindentation and finite element analysis. Acta Materialia, 2009, 57(3): 695–707.CrossRefGoogle Scholar
  18. [18]
    da Silva, K.D., Beltz, G.E. and Machova, A., Tension-shear coupling in slip and decohesion of iron crystals. Scripta Materialia, 2003, 49: 1163–1167.CrossRefGoogle Scholar
  19. [19]
    Cleri, F., Phillpot, S.R., Wolf, D. and Yip, S., Atomistic simulations of materials fracture and the link between atomic and continuum length scales. Journal of the American Ceramic Society, 1998, 81(3): 501–516.CrossRefGoogle Scholar
  20. [20]
    Sansoz, F. and Molinari, J.F., Incidence of atom shuffling on the shear and decohesion behavior of a symmetric tilt grain boundary in copper. Scripta Materialia, 2004, 50: 1283–1288.CrossRefGoogle Scholar
  21. [21]
    Choi, S.T. and Kim, K.-S., Nanoscale planar field projections of atomic decohesion and slip in crystalline solids. Part I. A crack-tip cohesive zone. Philosophical Magazine, 2007, 87(12): 1889–1919.CrossRefGoogle Scholar
  22. [22]
    Hong, S. and Kim, K.-S., Extraction of cohesive-zone laws from elastic far-fields of a cohesive crack tip: a field projection method. Journal of Mechanics of Physics of Solids, 2003, 51: 1267–1286.CrossRefGoogle Scholar
  23. [23]
    Kendall, K., Molecular Adhesion and Its Applications: The Sticky Universe. Berlin, Germany: Springer, 2001.Google Scholar
  24. [24]
    Hui, C.Y., Lin, Y.Y., Baney, J.M. and Kramer, E.J., The mechanics of contact and adhesion of periodically rough surfaces. Journal of Polymer Science: Part B: Polymer Physics, 2001, 39: 1195–1214.CrossRefGoogle Scholar
  25. [25]
    Komvopoulos, K., Surface engineering and microtribology for microelectromechanical systems. Wear, 1996, 200: 305–327.CrossRefGoogle Scholar
  26. [26]
    Fuller, K.N.G. and Tabor, D., The effect of surface roughness on the adhesion of elastic solids. Proceeding of the Royal Society of London A, 1975, 345: 327–342.CrossRefGoogle Scholar
  27. [27]
    Quon, R.A., Knarr, R.F. and Vanderlick, T.K., Measurement of the deformation and adhesion of rough solids in contact. The Journal of Physical Chemistry B, 2006, 103: 5320–5327.CrossRefGoogle Scholar
  28. [28]
    Benz, M., Rosenberg, K.J., Kramer, E.J. and Israelachvili, J.N., The deformation and adhesion of randomly rough and patterned surfaces. The Journal of Physical Chemistry B, 2006, 110(24): 11884–11893.CrossRefGoogle Scholar
  29. [29]
    Drelich, J., Adhesion forces measured between particles and substrates with nano-roughness. Minerals and Metallurgical Processing, 2006, 23: 226–232.Google Scholar
  30. [30]
    Bhushan, B., Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribology Letters, 1998, 4: 1–35.CrossRefGoogle Scholar
  31. [31]
    Briggs, G.A.D. and Briscoe, B.J., The effect of surface topography on the adhesion of elastic solids. Journal of Physics D: Applied Physics, 1977, 10: 2453–2466.CrossRefGoogle Scholar
  32. [32]
    Fuller, K.N.G. and Roberts, A.D., Rubber rolling on rough surfaces. Journal of Physics D: Applied Physics, 1981, 14: 221–239.CrossRefGoogle Scholar
  33. [33]
    Kim, H.-C. and Russell, T.P., Contact of elastic solids with rough surfaces. Journal of Polymer Science: Part B: Polymer Physics, 2001, 39: 1848–1854.CrossRefGoogle Scholar
  34. [34]
    Carbone, G., Mangialardi, L. and Persson, B.N.J., Adhesion between a thin elastic plate and a hard randomly rough substrate. Physical Review B, 2004, 70: 125407.CrossRefGoogle Scholar
  35. [35]
    Verneuil, E., Ladoux, B., Buguin, A. and Silberzan, P., Adhesion on microstructured surfaces. The Journal of Adhesion, 2007, 83: 449–472.CrossRefGoogle Scholar
  36. [36]
    Buzio, R. and Valbusa, U., Interfacial stiffness and adhesion of randomly rough contacts probed by elastomer colloidal AFM probes. Journal of Physics: Condensed Matter, 2008, 20: 354014.Google Scholar
  37. [37]
    Li, Q. and Kim, K.-S., Micromechanics of friction: effects of nanometre-scale roughness. Proceedings of the Royal Society A, 2008, 464(2093), 1319–1343.CrossRefGoogle Scholar
  38. [38]
    Bowden, F.P. and Tabor, D., The Friction and Lubrication of Solids. Oxford, UK: Oxford University Press, 1954.zbMATHGoogle Scholar
  39. [39]
    Johnson, K.L., Kendall, K. and Roberts, A.D., Surface energy and the contact of elastic solids. Proceedings of the Royal Society A, 1971, 324: 301–313.CrossRefGoogle Scholar
  40. [40]
    Johnson, K.L., The adhesion of two elastic bodies with slightly wavy surfaces. International Journal of Solids and Structures, 1995, 32: 423–430.CrossRefGoogle Scholar
  41. [41]
    Westergard, H.M., Bearing pressures and cracks. Journal of Applied Mechanics, 1939, 6: 49–53.Google Scholar
  42. [42]
    Tada, H., Paris, P.C. and Irwin, G.R., The Stress Analysis of Cracks Handbook (2nd Edition), St Louis, MO: Paris Productions, 1985.Google Scholar
  43. [43]
    Ndiaye, I., Maslouhi, A. and Denault, J., Characterization of interfacial properties of composite materials by acoustic emission. Polymer Composites, 2000, 21(4): 595–604.CrossRefGoogle Scholar
  44. [44]
    Yao, H. and Gao, H., Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko. Journal of the Mechanics and Physics of Solids, 2006, 54: 1120–1146.CrossRefGoogle Scholar
  45. [45]
    Cardy, J., Scaling and Renormalization in Statistical Physics. Cambridge: Cambridge University Press, 1996.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2009

Authors and Affiliations

  1. 1.Division of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations