Skip to main content
Log in

Constitutive Modeling of Rolled Shape Memory Alloy Sheets Taking into Account Pre-Texture and Anisotropic Hardening

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The drawing or rolling process endows polycrystal shape memory alloy with a crystallographic texture, which can result in macroscopic anisotropy. The main purpose of this work is to develop a constitutive model to predict the thermomechanical behavior of shape memory alloy sheets, which accounts for the crystallographic texture. The total macroscopic strain is decomposed into elastic strain and macro-transformation strain under isothermal condition. Considering the transformation strain in local grains and the orientation distribution function of crystallographic texture, the macro-transformation strain and the effective elastic modulus of textured polycrystal shape memory alloy are developed by using tensor expressions. The kinetic equation is established to calculate the volume fraction of the martensite transformation under given stress. Furthermore, the Hill’s quadratic model is developed for anisotropic transformation hardening of textured SMA sheets. All the calculation results are in good agreement with experimental data, which show that the present model can accurately describe the macro-anisotropic behaviors of textured shape memory alloy sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gall, K. and Sehitoglu, H., The role of texture in tension-compression asymmetry in poly- crystalline NiTi. International Journal of Plasticity, 1999, 15(1): 69–92.

    Article  Google Scholar 

  2. Gall, K., Lim, T.J., McDowell, D.L., Sehitoglu, H. and Chumlyakov, Y.I., The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi. International Journal of Plasticity, 2000, 16(4): 1189–1214.

    Article  Google Scholar 

  3. Miyazaki, S., No, V.H., Kitamura, K., Khantachawana, A. and Hosoda, H., Texture of Ti-Ni rolled thin plates and sputter-deposited thin films. International Journal of Plasticity, 2000, 16(4): 1135–1154.

    Article  Google Scholar 

  4. Gao, S. and Yi, S., Experimental study on the anisotropic behavior of textured NiTi pseudoelastic shape memory alloys. Materials Science and Engineering A, 2003, 362(1–2): 107–111.

    Article  Google Scholar 

  5. Banumathy, S., Mandal, R.K. and Singh, A.K., Texture and anisotropy of a hot rolled Ti-16Nb alloy. Journal of Alloys and Compounds, 2010, 500 (2): L26–L30.

    Article  Google Scholar 

  6. Geng, Y., Jin, M., Ren, W., Zhang, W. and Jin, X., Effects of aging treatment on martensitic transformation of Fe-Ni-Co-Al-Ta-B alloys. Journal of Alloys and Compounds, doi: 10.1016/j.jallcom.2012.03.033.

    Article  Google Scholar 

  7. Yuan, W.Q. and Yi, S., Pseudo-elastic strain estimation of textured TiNi shape memory alloys. Materials Science and Engineering A, 1999, 271(1–2): 439–448.

    Article  Google Scholar 

  8. Eucken, S., Hirsch, J. and Hornbogen, E., Texture and microstructure of meltspun shape memory alloys. Textures and Microstructures, 1988, 8–9: 415–426.

    Article  Google Scholar 

  9. Mulder, J.H., Thoma, P.E. and Beyer, J.Z., Anisotropy of the shape memory effect in tension of cold-rolled Ti50.8 Ni49.2 (at.%) sheet. Zeitschrift für Metallkunde, 1993, 84(7): 501–508.

    Google Scholar 

  10. Inoue, H., Miwa, N. and Inakazu, N., Texture and shape memory strain in TiNi alloy sheets. Acta Materialia, 1996, 44(12): 4825–4834.

    Article  Google Scholar 

  11. Zhao, L., Willemse, P.E., Mulder, J.H., Beyer, J. and Wei, W., Texture development and transformation strain of a cold-rolled Ti50-Ni45-Cu5 alloy. Scripta Materialia, 1998, 39(9): 1317–1323.

    Article  Google Scholar 

  12. Sittner, P., Liu, Y. and Novak, V., On the origin of Lüders-like deformation of NiTi shape memory alloys. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1719–1746.

    Article  Google Scholar 

  13. Chang, S.H. and Wu, S.K., Textures in cold-rolled and annealed Ti50Ni50 shape memory alloy. Scripta Materialia, 2004, 50(7): 937–941.

    Article  Google Scholar 

  14. Sittner, P., Neov, D., Lukas, P. and Toebbens, D.M., Neutron diffraction Sstudies of the stress effect on texture transformations in NiTi shape memory alloys. Journal of Neutron Research, 2004, 12(1–3): 15–20.

    Article  Google Scholar 

  15. Sutou, Y., Koeda, N., Omori, T., Kainuma, R. and Ishida, K., Effects of aging on stress-induced martensitic transformation in ductile Cu-Al-Mn–based shape memory alloys. Acta Materialia, 2009, 57(19): 5759–5770.

    Article  Google Scholar 

  16. Liu, Y., Xie, Z.L., Humbeeck, Van.J. and Delaey, L., Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet. Acta Materialia, 1999, 47(2): 645–660.

    Article  Google Scholar 

  17. Paula, A.S., Canejo, J.H.P.G., Mahesh, K.K., Silva, R.J.C., Braz Fernandes, F.M., Martins, R.M.S., Cardos, A.M. A. and Schell, N., Study of the textural evolution in Ti-rich NiTi using synchrotron radiation. Nuclear Instruments and Methods in Physics Research B, 2006, 246(1): 206–210.

    Article  Google Scholar 

  18. Eggeler, G., Wagner, M., Khalil-Allafi, J. and Baruj, A., Hard X-ray studies of stress-induced phase transformations of superelastic NiTi shape memory alloys under uniaxial load. Materials Science and Engineering A, 2008, 481–482(1): 414–419

    Google Scholar 

  19. Murasawa, G., Kitamura, K., Yoneyama, S., Miyazaki, S., Miyata, K., Nishioka, A. and Koda, T., Macroscopic stress–strain curve, local strain band behavior and the texture of NiTi thin sheets. Smart Materials and Structures, 2009, 18(5): 055003.

    Article  Google Scholar 

  20. Böhlke, T. and Bertram, A., The evolution of Hoohe’s law due to texture development in FCC polycrystas. International Journal of Solids and Structures, 2001, 38(52): 9437–9459.

    Article  Google Scholar 

  21. Solas, D.E. and Tomé, C.N., Texture and strain localization prediction using a N-site polycrystal model. International Journal of Plasticity, 2001, 17(5): 737–753.

    Article  Google Scholar 

  22. Lia, S., Hoferlin, E., Bael, A.V., Houtte, P.V. and Teodosiu, C., Finite element modeling of plastic anisotropy induced by texture and strain-path change. International Journal of Plasticity, 2003, 19(5): 647–674.

    Article  Google Scholar 

  23. Houtte, P.V., Kanjarla, A.K., Bael, A.V., Seefeldt, M. and Delannay, L., Multiscale modelling of the plastic anisotropy and deformation texture of polycrystalline materials. European Journal of Mechanics A/Solids, 2006, 25(4): 634–648.

    Article  MathSciNet  Google Scholar 

  24. Nikolova, S., Lebensohnb, R.A. and Raabea, D., Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers. Journal of the Mechanics and Physics of Solids, 2006, 54(7): 1350–1375.

    Article  Google Scholar 

  25. Plunket, B., Lebensohn, R.A., Cazacu, O. and Barlat, F., Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Materialia, 2006, 54(16): 4159–4169.

    Article  Google Scholar 

  26. Kim, J.H., Lee, M.G., Barlat, F., Wagoner, R.H. and Chung, K., An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals. International Journal of Plasticity, 2008, 24(12): 2298–2334.

    Article  Google Scholar 

  27. Lademo, O-G., Pedersen, K.O., Berstad, T., Furu, T. and Hopperstad, O.S., An experimental and numerical study on the formability of textured AlZnMg alloys. European Journal of Mechanics A/Solids, 2008, 27(2): 116–140.

    Article  Google Scholar 

  28. Huang, M. and Zheng, T., Orientation-dependent function for properties of polycrystals and its applications. Acta Mechanica, 2009, 207(3–4): 135–143.

    Article  Google Scholar 

  29. Chen, Y., Lee, W.B. and Nakamachi, E., Crystallographic homogenization finite element method and its application on simulationof evolutionof plastic deformation induced texture. Acta Mechanica Solida Sinica, 2010, 23(1): 36–48.

    Article  Google Scholar 

  30. Shu, Y. and Bhattacharya, K., The influence of texture on the shape memory effect in polycrystals. Acta Materialia, 1998, 46(15): 5457–5473.

    Article  Google Scholar 

  31. Thamburaja, P. and Anand, L., Polycrystalline shape-memory materials: effect of crystallographic texture. Journal of the Mechanics and Physics of Solids, 2001, 49(4): 709–737.

    Article  Google Scholar 

  32. Sadjadpour, A. and Bhattacharya, K., A micromechanics-inspired constitutive model for shape- memory alloys. Smart Materials and Structures, 2007, 16(5): 1751–1765.

    Article  Google Scholar 

  33. Hill, R., A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London A, 1948, 193(2): 281–297.

    Article  MathSciNet  Google Scholar 

  34. Bunge, H.J., Texture Analysis in Materials Science. London: Butterworths, 1982.

    Google Scholar 

  35. Lu, Z.K. and Weng, G.J., A self-consistent model for the stress-strain behaveior of shape memory alloy polycrystals. Acta Materialia, 1998, 46(15): 5423–5433.

    Article  Google Scholar 

  36. Yuan, W.Q. and Wang, J.N., Anisotropy of the phase-transformation plasticity in textured CuZnAl shape-memory sheets. Journal of Materials Processing Technology, 2002, 123(1): 31–35.

    Article  Google Scholar 

  37. Li, H., Yin, F., Sawaguchi, T., Ogawa, K., Zhao, X. and Tsuzaki, K., Texture evolution analysis of warm-rolled Fe-28Mn-6Si-5Cr shape memory alloy. Materials Science and Engineering A, 2008, 494(1–2): 217–226.

    Article  Google Scholar 

  38. Lubarda, V. A. and Krajcinovic, D., Damage tensors and the crack density distribution. International Journal of Solids and Structures, 1993, 30(20): 2859–2877.

    Article  Google Scholar 

  39. Qidwai, M.A. and Lagoudas, D.C., On thermomechanics and transformation surfaces of poly–crystalline NiTi shape memory alloy material. International Journal of Plasticity, 2000, 16(10–11): 1309–1343.

    Article  Google Scholar 

  40. Wang, Z., Zhu, Y.P., Dui, G.S. and Cui, H.N., Micromechanical analysis for mechanical property of shape memory alloy. Journal Beijing Jiaotong University, 2008, 32(1): 119–122, 126. (In Chinese)

    Google Scholar 

  41. Bunge, H.J., Kiewel, R., Reinert, Th. and Fritsche, L., Elastic properties of polycrystals—influence of texture and stereology. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 29–66.

    Article  MathSciNet  Google Scholar 

  42. Lu, Z.K. and Weng, G.J., Martensitic transformation and stress-strain relations of shape- memory alloys. Journal of the Mechanics and Physics of Solids, 1997, 45(11–12): 1905–1928.

    Article  Google Scholar 

  43. Khachaturyan, A.G., Theory of Structural Transformations in Solids. New York: John Wiley & Sons, 1983.

    Google Scholar 

  44. Mercier, O., Melton, K.N., Gremaud, G. and Hgi, J., Single-crystal elastic constants of the equiatomic NiTi alloy near the martensitic transformation. Journal of Applied Physics, 1980, 51(3): 1833–1834.

    Article  Google Scholar 

  45. Comstock, R. J. and Wert, J. A., Evaluation of a model of stress-induced martensite formation in NiTi sheet. Zeitschrift für Metallkunde, 1997, 8(6): 887–895.

    Google Scholar 

  46. Darrieulat, M. and Montheillet, F., A texture based continuum approach for predicting the plastic behaviour of rolled sheet. International Journal of Plasticity, 2003, 19(4): 517–546.

    Article  Google Scholar 

  47. Cazacu, O. and Barlat, F., A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. International Journal of Plasticity, 2004, 20(11): 2027–2045.

    Article  Google Scholar 

  48. Yoon, J.W., Barlat, F., Gracio, J.J. and Rauch, E., Anisotropic strain hardening behavior in simple shear for cube textured aluminum alloy sheets. International Journal of Plasticity, 2005, 21(12): 2426–2447.

    Article  Google Scholar 

  49. Hu, W.L., Constitutive modeling of orthotropic sheet metals by presenting hardeninginduced anisotropy. International Journal of Plasticity, 2007, 23(4): 620–639.

    Article  MathSciNet  Google Scholar 

  50. Soare, S., Yoon, J.W. and Cazacu, O., On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming. International Journal of Plasticity, 2008, 24(6): 915–944.

    Article  Google Scholar 

  51. Brenner, R., Lebensohn, R.A. and Castelnau, O., Elastic anisotropy and yield surface estimates of polycrystals. International Journal of Solids and Structures, 2009, 46(17): 3018–3026.

    Article  Google Scholar 

  52. Nixon, M.E., Cazacu, O. and Lebensohn, R.A., Anisotropic response of high-purity a-titanium: Experimental characterization and constitutive modeling. International Journal of Plasticity, 2010, 26(4): 516–532.

    Article  Google Scholar 

  53. Mura, T., Micromechanics of Defects in Solids. Dordrecht: Martinus Nijhoff Publishers, 1987.

    Book  Google Scholar 

  54. Gavazzi, A.C. and Lagoudas, D.C., On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Computational. Mechanics, 1990, 7(1): 13–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Zhu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11272136, 10902111, 10772021 and 10972027) and the Foundation of Jiangsu University (No. 11JDG066).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Wang, Y. & Dui, G. Constitutive Modeling of Rolled Shape Memory Alloy Sheets Taking into Account Pre-Texture and Anisotropic Hardening. Acta Mech. Solida Sin. 27, 181–194 (2014). https://doi.org/10.1016/S0894-9166(14)60028-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(14)60028-8

Key Words

Navigation