Skip to main content
Log in

Giant Anhysteretic Response of Ferroelectric Solid Solutions with Morphotropic Boundaries: The Role of Polar Anisotropy

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Computer modeling and simulation for the Pb(Zr1−xTix)O3 (PZT) system reveal the role of polar anisotropy on the giant anhysteretic response and structural properties of morphotropic phase boundary (MPB) ferroelectrics. It is shown that a drastic reduction of the composition-dependent polar anisotropy near the MPB flattens energy surfaces and thus facilitates reversible polarization rotation. It is further shown that the polar anisotropy favors formation of polar domains, promotes phase decomposition and results in a two-phase multidomain state, which response to applied electric field is anhysteretic when the polar domain reorientation is only caused by polarization rotation other than polar domain wall movement. This is the case for the decomposing ferroelectrics under a poling electric field with the formation of a two-phase multidomain microstructure, wherein most domain walls are pinned at the two-phase boundaries. Indication of the microstructure dependence of the anhysteretic strain response opens new avenues to improve the piezoelectric properties of these materials through the microstructure engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Uchino, K., Piezoelectric Actuators and Ultrasonic Motors. Boston: Kluwer Academic, 1996.

    Book  Google Scholar 

  2. Fu, H. and Cohen, R.E., Polarization rotation mechanism for ultrahigh electromechanical response in single crystal piezoelectrics. Nature, 2000, 403: 281–283.

    Article  Google Scholar 

  3. Bellaiche, L., Garcia, A. and Vanderbilt, D., Finite-temperature properties of Pb(Zr1-xTi x )O3 alloys from first principles. Physical Review Letters, 2000, 84: 5427–5430.

    Article  Google Scholar 

  4. Bellaiche, L., Garcia, A. and Vanderbilt, D., Electric-field induced polarization paths in Pb(Zr1-xTi x )O3 alloys. Physical Review B, 2001, 64: 060103.

    Article  Google Scholar 

  5. Noheda, B., Cox, D.E., Shirane, G., Park, S.E., Cross, L.E. and Zhong, Z., Polarization rotation via a Monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3-8% PbTiO3. Physical Review Letters, 2001, 86: 3891–3894.

    Article  Google Scholar 

  6. Du, X.H., Zheng, J., Belegundu, U. and Uchino, K., Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary. Applied Physics Letters, 1998, 72: 2421–2423.

    Article  Google Scholar 

  7. Ishibashi, Y. and Iwata, M., Morphotropic phase boundary in solid solution systems of perovskite-type oxide ferroelectrics. Japanese Journal of Applied Physics. Part 2. Letters, 1998, 37: L985–L987.

    Google Scholar 

  8. Budimir, M., Damjanovic, D. and Setter, N., Piezoelectric anisotropy-phase transition relations in perovskite single crystals. Journal of Applied Physics, 2003, 94: 6753–6761.

    Article  Google Scholar 

  9. Davis, M., Damjanovic, D. and Setter, N., Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Physical Review B, 2006, 73:014115.

    Article  Google Scholar 

  10. Khachaturyan, A.G., Ferroelectric solid solutions with morphotropic boundary: rotational instability of polarization, metastable coexistence of phases and nanodomain adaptive states. Philosophical Magazine, 2010, 90: 37–60.

    Article  Google Scholar 

  11. Heitmann, A.A. and Rossetti, Jr., G.A., Thermodynamics of polar anisotropy in morphotropic ferroelectric solid solutions. Philosophical Magazine, 2010, 90:71–87.

    Article  Google Scholar 

  12. Kuwata, J., Uchino, K. and Nomura, S., Phase transitions in the PbZn1/3Nb2/3O3-PbTiO3 system. Ferroelectrics, 1981, 37:579–582.

    Article  Google Scholar 

  13. Shrout, T., Chang, Z.P., Kin, M. and Markgraf, S., Dielectric behavior of single-crystals near the (1 − x)Pb(Mg1/3Nb2/3)O3-(x)PbTiO3 morphotropic phase boundary. Ferroelectrics Letters, 1990, 12: 63–69.

    Article  Google Scholar 

  14. Park, S.E. and Shrout, T.R., Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics, 1997, 82:1804–1811.

    Article  Google Scholar 

  15. Jaffe, B., Cook, W.R. and Jaffe, H., Piezoelectric Ceramics. London: Academic, 1971.

    Google Scholar 

  16. Rossetti, Jr., G.A., Zhang, W. and Khachaturyan, A.G., Phase coexistence near the morphotropic phase boundary in lead zirconate titanate (PbZrO3-PbTiO3) solid solutions. Applied Physics Letters, 2006, 88: 072912.

    Article  Google Scholar 

  17. Rossetti, Jr., G.A. and Khachaturyan, A.G., Inherent nanoscale structural instabilities near morphotropic boundaries in ferroelectric solid solutions. Applied Physics Letters, 2007, 91: 072909.

    Article  Google Scholar 

  18. Rossetti, Jr., G.A., Khachaturyan, A.G., Akcay, G. and Ni, Y., Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. Journal of Applied Physics, 2008, 103: 114113.

    Article  Google Scholar 

  19. Rao, W.F. and Wang, Y.U., Bridging domain mechanism for phase coexistence in morphotropic phase boundary ferroelectrics. Applied Physics Letters, 2007, 90: 182906.

    Article  Google Scholar 

  20. Rao, W.F. and Yang, Y.U., Microstructures of coherent phase decomposition near morphotropic phase boundary in lead zirconate titanate. Applied Physics Letters, 2007, 91: 052901.

    Article  Google Scholar 

  21. Ari-Gur, P. and Benguigui, L., X-ray study of PZT solid-solutions near morphotropic phase transition. Solid State Communications, 1978, 15: 1077–1079.

    Article  Google Scholar 

  22. Noheda, B. and Cox, D.E., Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transitions, 2006, 79: 5–20.

    Article  Google Scholar 

  23. Frantti, J., Notes of the recent structural studies on lead zirconate titanate. The Journal of Physical Chemistry B, 2008, 112: 6521–6535.

    Article  Google Scholar 

  24. Jin, Y.M., Wang, Y.U., Khachaturyan, A.G., Li, J.F. and Viehland, D., Conformal miniaturization of domains with low domain-wall energy: Monoclinic ferroelectric states near the morphotropic phase boundaries. Physical Review Letters, 2003, 91: 197601.

    Article  Google Scholar 

  25. Jin, Y.M., Wang, Y.U., Khachaturyan, A.G., Li, J.F. and Viehland, D., Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains. Journal of Applied Physics, 2003, 94: 3629–3640.

    Article  Google Scholar 

  26. Wang, Y.U., Three intrinsic relationships of lattice parameters between intermediate monoclinic M-C and tetragonal phases in ferroelectric Pb[(Mg1/3Nb2/3)(1-x)Ti x ]O3 and Pb[(Zn1/3Nb2/3)(1-x)Ti x ]O3 near morphotropic phase boundaries. Physical Review B, 2006,73: 014113.

    Article  Google Scholar 

  27. Wang, Y.U., Diffraction theory of nanotwin superlattices with low symmetry phase. Physical Review B, 2006, 74: 104109.

    Article  Google Scholar 

  28. Wang, Y.U., Diffraction theory of nanotwin superlattices with low symmetry phase: Application to rhombohedral nanotwins and monoclinic M-A and M-B phases. Physical Review B, 2007, 76: 024108.

    Article  Google Scholar 

  29. Rao, W.F. and Wang, Y.U., Domain wall broadening mechanism for domain size effect of enhanced piezoelectricity in crystallographically engineered ferroelectric single crystals. Applied Physics Letters, 2007, 90: 041915.

    Article  Google Scholar 

  30. Wang, Y.U., Field-induced inter-ferroelectric phase transformations and domain mechanisms in high-strain piezoelectric materials: insights from phase field modeling and simulation. Journal of Materials Science, 2009, 44: 5225–5234.

    Article  Google Scholar 

  31. Wada, S., Yako, K., Kakemoto, H., Tsurumi, T. and Kiguchi, T., Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. Journal of Applied Physics, 2005, 98: 014109.

    Article  Google Scholar 

  32. Haun, M.J., Furman, E., Jang, S.J. and Cross, L.E., Thermodynamic theory of the lead zirconate-titanate solid-solution system, 1. Phenomenology. Ferroelectrics, 1989, 99: 13–25.

    Article  Google Scholar 

  33. Nambu, S. and Sagala, D.A., Domain formation and elastic long-range interaction in ferroelectric perovskites. Physical Review B, 1994, 50: 5838–5847.

    Article  Google Scholar 

  34. Damjanovic, D., Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Report on Progress in Physics, 1998, 61: 1267–1324..

    Article  Google Scholar 

  35. Hu, H.L. and Chen, L.Q., Three-dimensional computer simulation of ferroelectric domain formation. Journal of the American Ceramic Society, 1998, 81: 492–500.

    Article  Google Scholar 

  36. Semenovskaya, S. and Khachaturyan, A.G., Development of ferroelectric mixed states in a random field of static defects. Journal of Applied Physics, 1998, 83: 5125–5136.

    Article  Google Scholar 

  37. Li, Y.L., Hu, S.Y., Liu, Z.K. and Chen, L.Q., Phase-field model of domain structures in ferroelectric thin films. Applied Physics Letters, 2001, 78: 3878.

    Article  Google Scholar 

  38. Ni, Y., Jin, Y.M. and Khachaturyan, A.G., The transformation sequences in the cubic (tetragonal decomposition). Acta Materialia, 2007, 55: 4903–4914.

    Article  Google Scholar 

  39. Ni, Y. and Khachaturyan, A.G., From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition. Nature Materials. 2009, 8: 410–414.

    Article  Google Scholar 

  40. Khachaturyan, A.G., Theory of Structural Transformations in Solids Ch. 7. New York: Wiley, 1983.

    Google Scholar 

  41. Haun, M.J., Thermodynamic theory of the Lead Zirconate-Titanate solid solution system. Ph.D. thesis, The Pennsylvania State University, 1988.

  42. Cahn, J.W. and Hilliard, J.E., Free energy of a nonuniform system. 1. Interfacial free energy. Journal of Chemical Physics, 1958, 28: 258–267.

    Article  Google Scholar 

  43. Chen, L.Q. and Shen, J., Applications of semi-implicit Fourier-spectral method to phase field equations. Computer Physics Communications, 1998, 108: 147–158.

    Article  Google Scholar 

  44. Li, J.Y., Rogan, R.C., Ustundag, E. and Bhattacharya, K., Domain switching in polycrystalline ferroelectric ceramics. Nature Materials, 2005, 4: 776–781.

    Article  Google Scholar 

  45. Ren, X.B., Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nature Materials, 2004, 3: 91–94.

    Article  Google Scholar 

  46. Ni, Y., Jin, Y.M. and Khachaturyan, A.G., Domain structure produced by confined displacive transformation and its response to the applied field. Metallurgical and Materials Transactions A, 2008, 39: 1658–1664.

    Article  Google Scholar 

  47. Rao, W.F. and Wang, Y.U., Control of domain configurations and sizes in crystallographically engineered ferroelectric single crystals: Phase field modeling. Applied Physics Letters, 2010, 97: 162901.

    Article  Google Scholar 

  48. Jayachandran, K.P., Guedes, J.M. and Rodrigues, H.C., Piezoelectricity enhancement in ferroelectric ceramics due to orientation. Applied Physics Letters, 2008, 92: 232901.

    Article  Google Scholar 

  49. Ahluwalia, R., Lookman, T., Saxena, A. and Cao, W.W., Domain-size dependence of piezoelectric properties of ferroelectrics. Physical Review B, 2005, 72: 014112.

    Article  Google Scholar 

  50. Hlinka, J., Ondrejkovic, P. and Marton, P., The piezoelectric response of nanotwinned BaTiO3. Nanotechnology, 2009, 20: 105709.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen G. Khachaturyan.

Additional information

Yong Ni gratefully appreciates financial supports from the ‘Hundred of Talents Project’ of the Chinese Academy of Sciences. A. G. Khachaturyan and Yong Ni gratefully acknowledge the support from NSF DMR under the grant NSF DMR-0704045. The simulations were performed on the LoneStar in the Texas Advanced Computer Center.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Y., Khachaturyan, A.G. Giant Anhysteretic Response of Ferroelectric Solid Solutions with Morphotropic Boundaries: The Role of Polar Anisotropy. Acta Mech. Solida Sin. 25, 429–440 (2012). https://doi.org/10.1016/S0894-9166(12)60038-X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(12)60038-X

Key words

Navigation