Skip to main content
Log in

Dynamic Buckling Behavior of Multi-Walled Carbon Nanotubes Subjected to Step Axial Loading

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This paper studies the dynamic buckling behavior of multi-walled carbon nanotubes (MWNTs) subjected to step axial loading. A buckling condition is derived, and numerical results are presented for MWNTs under fixed boundary conditions. It is shown that the critical buckling load of MWNTs is of multi-branches and decreases as the time elongates. The associated buckling modes for different layers of MWNTs can be either in-phase or out of phase, which is related to the branch that the critical buckling load belongs to. For MWNTs with the same innermost tube radius, the critical buckling load is decreased when increasing the layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajayan, P.M. and Zhou, O.Z., Applications of carbon nanotubes. Topics in Applied Physics, 2001, 80: 391–425.

    Article  Google Scholar 

  2. Qian, D., Wagner, G.J., Liu, W.K., Yu, M.F. and Ruoff, R.S., Mechanics of carbon nanotubes. Applied mechanics reviews, 2002, 55: 495–533.

    Article  Google Scholar 

  3. Zhang, Y.Q., Liu, G.R. and Wang, J.S., Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Physical review B, 2004, 70: 205430–1–205430–6.

    Article  Google Scholar 

  4. Chang, T.C., Guo, W.L. and Guo, X.M., Buckling of multiwalled carbon nanotubes under axial compression and bending via a molecular mechanics model. Physical review B, 2005, 72: 064101–1–064101–11.

    Article  Google Scholar 

  5. Waters, J.F., Guduru, P.R., Jouzi, M. and Xu, J.M., Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Applied Physics Letters, 2005, 87: 103109–1–103109–3.

    Article  Google Scholar 

  6. Huang, Y., Wu, J. and Hwang, K.C., Thickness of graphene and single-wall carbon nanotubes. Physical review B, 2006, 74: 245413–1–245413–9.

    Article  Google Scholar 

  7. Fu, Y., Bi, R. and Zhang, P., Nonlinear dynamic instability of double-walled carbon nanotubes under periodic excitation. Acta Mechanica Solida Sinica, 2009, 22(3): 206–212.

    Article  Google Scholar 

  8. Lu, W.B. and Wu, J., A continuum model for axial-strain-induced torsion in single-wall carbon nanotubes. Acta Mechanica Solida Sinica, 2009, 22(4): 283–286.

    Article  MathSciNet  Google Scholar 

  9. Sun, C. and Liu, K., Combined torsional buckling of multi-walled carbon nanotubes coupling with axial loading and radial pressures. International Journal of Solids and Structures, 2008, 45: 2128–2139.

    Article  Google Scholar 

  10. Yakobson, B.I., Brabec, C.J. and Bernholc, J., Nanomechanics of carbon tubes: instability beyond linear response. Physical Review Letters, 1996, 76: 2511–2514.

    Article  Google Scholar 

  11. Ru, C.Q., Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. Journal of Applied Physics, 2000, 87: 7227–7231.

    Article  Google Scholar 

  12. Wang, C.Y., Ru, C.Q. and Mioduchowski, A., Elastic buckling of multiwall carbon nanotubes under high pressure. Journal of Nanoscience and Nanotechnology, 2003, 3: 199–208.

    Article  Google Scholar 

  13. Tang, D.S., Bao, Z.X., Wang, L.J., Chen, L.C., Sun, L.F., Liu, Z.Q., Zhou, W.Y. and Xie, S.S., The electrical behavior of carbon nanotubes under high pressure. Journal of Physics and Chemistry of Solids, 2000, 61: 1175–1178.

    Article  Google Scholar 

  14. Wang, L.F., Zheng, Q.S., Liu, J.Z. and Jiang, Q., Size dependence of the thin-shell model for carbon nanotubes. Physical Review Letters, 2005, 95: 105501–1–105501–4.

    Article  Google Scholar 

  15. Peng, J., Wu, J., Hwang, K.C., Song, J. and Huang, Y., Can a single-wall carbon nanotube be modeled as a thin shell? Journal of the Mechanics and Physics of Solids, 2008, 56: 2213–2224.

    Article  MathSciNet  Google Scholar 

  16. Harik, W.M., Ranges of applicability for the continuum-beam model in the constitutive analysis of carbon-nanotubes and nanorods. Solid State Communications, 2001, 120: 331–335.

    Article  Google Scholar 

  17. Wang, C.Y., Ru, C.Q. and Mioduchowski, A., Axially compressed buckling of pressured multiwall carbon nanotubes. International Journal of Solids and Structures, 2003, 40: 3893–3911.

    Article  Google Scholar 

  18. Wang, C.Y., Ru, C.Q. and Mioduchowski, A., Applicability and limitations of simplified elastic shell equations for carbon nanotubes. ASME Journal of Applied Mechanics, 2004, 71: 622–631.

    Article  Google Scholar 

  19. Akita, S., Nishio, M. and Nakayama, Y., Buckling of multiwall carbon nanotubes under axial compression. Japanese Journal of Applied Physics, 2006, 45: 5586–5589.

    Article  Google Scholar 

  20. Sears, A. and Batra, R.C., Buckling of multiwalled carbon nanotubes under axial compression. Physical Review B, 2006, 73: 085410–1–085410–11.

    Article  Google Scholar 

  21. Dharap, P., Li, Z.L., Nagarajaiah, S. and Barrera, E.V., Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology, 2004, 15: 379–382.

    Article  Google Scholar 

  22. Li, C.Y. and Chou, T.W., Strain and pressure sensing using single-walled carbon nanotubes. Nanotechnology, 2004, 15: 1493–1496.

    Article  Google Scholar 

  23. Sun, C. and Liu, K., Dynamic buckling of double-walled carbon nanotubes under step axial load. Acta Mechanica Solida Sinica, 2009, 22(1): 27–36.

    Article  Google Scholar 

  24. Wang, X., Lu, G. and Lu, Y.J., Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading. International Journal of Solids and Structures, 2007, 44: 336–351.

    Article  Google Scholar 

  25. Xu, X.S., Su, X.Y. and Wang, R., Dynamic buckling of elastic-plastic cylindrical shells and axial stress waves. Science in China (Series A), 1995, 38: 472–480.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengqi Sun.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11172304 and 11021262) and the National Basic Research Program of China (No. 2012CB37500).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Liu, K. & Hong, Y. Dynamic Buckling Behavior of Multi-Walled Carbon Nanotubes Subjected to Step Axial Loading. Acta Mech. Solida Sin. 25, 117–125 (2012). https://doi.org/10.1016/S0894-9166(12)60013-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(12)60013-5

Key words

Navigation