Skip to main content
Log in

Vibration Confinement of Thickness-Shear and Thickness-Twist Modes in a Functionally Graded Piezoelectric Plate

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

We analyze shear-horizontal vibrations of a functionally graded piezoelectric plate of polarized ceramics or crystals of 6mm symmetry. The material of the central portion of the plate is different from that of the rest of the plate. It is shown that when the material properties of the central portion and the rest of the plate satisfy certain conditions, there exist trapped thickness-shear and thickness-twist modes whose vibrations are mainly confined within the central portion and decay quickly outside the central portion. The effects of the functionally graded material properties on the behaviors of the trapped modes are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koga, I., Thickness vibrations of piezoelectric oscillating crystals. Physics, 1932, 3: 70–80.

    Article  Google Scholar 

  2. Tiersten, H.F., Thickness vibrations of piezoelectric plates. Journal of the Acoustical Society of America, 1963, 35: 53–58.

    Article  MathSciNet  Google Scholar 

  3. Tiersten, H.F., A corrected modal representation of thickness vibrations in quartz plates and its influence on the transversely varying case. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50: 1436–1443.

    Article  Google Scholar 

  4. Mindlin, R.D., Thickness-twist vibrations of an infinite, monoclinic, crystal plate. International Journal of Solids and Structures, 1965, 1: 141–145.

    Article  Google Scholar 

  5. Mindlin, R.D., Bechmann’s number for harmonic overtones of thickness/twist vibrations of rotated Y-cut quartz plates. Journal of the Acoustical Society of America, 1966, 41: 969–973.

    Article  Google Scholar 

  6. Yang, Z.T., Hu, Y.T. and Yang, J.S., Effect of mass layer stiffness on propagation of thickness-twist waves in rotated-y-cut quartz crystal plates. Ultrasonics, 2009, 49: 401–403.

    Article  Google Scholar 

  7. Hickernell, F.S., Shear horizontal BG surface acoustic waves on piezoelectrics: a historical note. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52: 809–811.

    Article  Google Scholar 

  8. Bleustein, J.L., Some simple modes of wave propagation in an infinite piezoelectric plate. Journal of the Acoustical Society of America, 1969, 45: 614–620.

    Article  Google Scholar 

  9. Li, F.M., Wang, Y.S., Hu, C. and Huang, W.H., Wave localization in randomly disordered periodic layered piezoelectric structures. Acta Mechanica Sinica, 2006, 22: 559–567.

    Article  MathSciNet  Google Scholar 

  10. Li, F.M., Xu, M.Q. and Wang, Y.S., Frequency-dependent localization length of SH-waves in randomly disordered piezoelectric phononic crystals. Solid State Communications, 2007, 141: 296–301.

    Article  Google Scholar 

  11. Qian, Z.H., Jin, F., Wang, Z.K. and Kishimoto, K., Dispersion relations for SH-wave propagation in periodic piezoelectric composite layered structures. International Journal of Engineering Science, 2004, 42: 673–689.

    Article  Google Scholar 

  12. Pang, W., Zhang, H. and Kim, E.S., Micromachined acoustic wave resonator isolated from substrate. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52: 1239–1246.

    Article  Google Scholar 

  13. Link, M., Schreiter, M., Weber, J., Primig, R., Pitzer, D. and Cabl, R., Solidly mounted ZnO shear mode film bulk acoustic wave resonators for sensing applications in liquids. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53: 492–496.

    Article  Google Scholar 

  14. Mindlin, R.D. and Lee, P.C.Y., Thickness-shear and flexural vibrations of partially plated, crystal plates. International Journal of Solids and Structures, 1966, 2: 125–139.

    Article  Google Scholar 

  15. Yang, J.S., Chen, Z.G. and Hu, Y.T., Trapped thickness-twist modes in an inhomogeneous piezoelectric plate of 6mm crystals. Philosophical Magazine Letters, 2006, 86: 699–705.

    Article  Google Scholar 

  16. Yamada, K., Yamazaki, D. and Nakamura, K., A functionally graded piezoelectric materials created by an internal temperature gradient. Japanese Journal of Applied Physics Part 2-Letters, 2001, 40: L49–L52.

    Article  Google Scholar 

  17. Takagi, K., Li, J.F., Yokoyama, S. and Watanabe, R., Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators. Journal of the European Ceramic Society, 2003, 23: 1577–1583.

    Article  Google Scholar 

  18. Du, J.K., Jin, X.Y., Wang, J. and Xian, K., Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics, 2007, 46: 13–22.

    Article  Google Scholar 

  19. Qian, Z.H., Jin, F., Lu, T.J. and Kishimoto, K., Transverse surface waves in functionally graded piezoelectric materials with experimental variation. Smart Materials and Structures, 2008, 17, 065005.

    Article  Google Scholar 

  20. Ichinose, N., Miyamoto, N. and Takahashi, S., Ultrasonic transducers with functionally graded piezoelectric ceramics. Journal of the European Ceramic Society, 2004, 24: 1681–1685.

    Article  Google Scholar 

  21. Steinhausen, R., Kouvatov, A., Pientschke, C., Langhammer, H.T., Seifert, H., Beige, W. and Abicht, H., AC-poling of functionally graded piezoelectric bending devices. Integrated Ferroelectrics, 2004, 63: 15–20.

    Article  Google Scholar 

  22. Yang, J.S., Jin, Z.H. and Li, J.Y., On the shear stress distribution between a functionally graded piezoelectric actuator and an elastic substrate and the reduction of its concentration. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(11): 2360–2362.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxi Liu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 10972147) and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0971).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, Y., Liu, J. Vibration Confinement of Thickness-Shear and Thickness-Twist Modes in a Functionally Graded Piezoelectric Plate. Acta Mech. Solida Sin. 24, 299–307 (2011). https://doi.org/10.1016/S0894-9166(11)60031-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S0894-9166(11)60031-1

Key words

Navigation