A two-current model for the dynamics of cardiac membrane


In this paper we introduce and study a model for electrical activity of cardiac membrane which incorporates only an inward and an outward current. This model is useful for three reasons: (1) Its simplicity, comparable to the FitzHugh-Nagumo model, makes it useful in numerical simulations, especially in two or three spatial dimensions where numerical efficiency is so important. (2) It can be understood analytically without recourse to numerical simulations. This allows us to determine rather completely how the parameters in the model affect its behavior which in turn provides insight into the effects of the many parameters in more realistic models. (3) It naturally gives rise to a one-dimensional map which specifies the action potential duration as a function of the previous diastolic interval. For certain parameter values, this map exhibits a new phenomenon—subcritical alternans—that does not occur for the commonly used exponential map.

This is a preview of subscription content, access via your institution.


  1. Banville, I. and R. Gray (2002). Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias. J. Cardiovasc. Electrophysiol. 13, 1141–1149.

    Article  Google Scholar 

  2. Beeler, G. and H. Reuter (1977). Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. (Lond.) 268, 177–210.

    Google Scholar 

  3. Bender, C. and S. Orszag (1978). Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill.

  4. Boyett, M. and D. Fedida (1984). Changes in the electrical activity of dog cardiac Purkinje fibres at high heart rates. J. Physiol. 350, 361–391.

    Google Scholar 

  5. Euler, D. (1999). Cardiac Alternans: Mechanisms and pathophysiological significance. Cardiovasc. Res. 42, 583–590.

    Article  Google Scholar 

  6. Fenton, F. and A. Karma (1998). Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8, 20–47.

    Article  MATH  Google Scholar 

  7. FitzHugh, R. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol. 43, 867–896.

    Article  Google Scholar 

  8. FitzHugh, R. (1961). Impulse and physiological states in models of nerve membrane. Biophys. J. 1, 445–466.

    Article  Google Scholar 

  9. Gilmour, R., N. Otani and M. Watanabe (1997). Memory and complex dynamics in cardiac Purkinje fibers. Am. J. Physiol. 272, 1826–1832.

    Google Scholar 

  10. Glass, L. and M. Mackey (1988). From Clocks to Chaos: The Rhythms of Life, Princeton University Press.

  11. Golubitsky, M. and D. Schaeffer (1985). Singularities and Groups in Bifurcation Theory, Vol. I, Springer.

  12. Guevara, M., M. Ward, A. Shrier and L. Glass (1984). Electrical alternans and period-doubling bifurcations. Comput. Cardiology 167–170.

  13. Hall, G. M., S. Bahar and D. Gauthier (1999). Prevalence of rate-dependent behaviors in cardiac muscle. Phys. Rev. Lett. 82, 2995–2998.

    Article  Google Scholar 

  14. Karma, A. (1993). Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett. 71, 1103–1106.

    MATH  MathSciNet  Article  Google Scholar 

  15. Karma, A. (1994). Electrical alternans and sprial wave breakup in cardiac tissue. Chaos 4, 461–472.

    Article  Google Scholar 

  16. Kevorkian, J. and J. Cole (1981). Perturbation Methods in Applied Mathematics, Springer.

  17. Luo, C. and Y. Rudy (1991). A model of the ventricular cardiac action potential. Circ. Res. 68, 1501–1526.

    Google Scholar 

  18. Luo, C. and Y. Rudy (1994). A dynamic model of the cardiac ventricular action potential. Circ. Res. 74, 1071–1096.

    Google Scholar 

  19. Noble, D. (1960). Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature 188, 495–497.

    Google Scholar 

  20. Noble, D. (1962). A modification of the Hodgkin-Huxley equations applicable to purkinje fibre action potentials. J. Physiol. 160, 317–352.

    Google Scholar 

  21. Nolasco, J. and R. Dahlen (1968). A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 25, 191–196.

    Google Scholar 

  22. Strogatz, S. (1994). Nonlinear Dynamics and Chaos, Addison Wesley.

  23. Tolkacheva, E., D. Schaeffer, D. Gauthier and C. Mitchell (2002). Analysis of the Fenton-Karma model through approximation by a one dimensional map. Chaos 12, 1034–1042.

    MathSciNet  Article  MATH  Google Scholar 

  24. Winfree, A. (1987). When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias, Princeton University Press.

Download references

Author information



Corresponding author

Correspondence to Colleen C. Mitchell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mitchell, C.C., Schaeffer, D.G. A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65, 767–793 (2003). https://doi.org/10.1016/S0092-8240(03)00041-7

Download citation


  • Bifurcation Diagram
  • Action Potential Duration
  • Solution Branch
  • Balt
  • Cardiac Action Potential