Abstract
We incorporate a previously validated mathematical model of a vascularized tumor into an optimal control problem to determine the temporal scheduling of radiotherapy and angiogenic inhibitors that maximizes the control of a primary tumor. Our results reveal that optimal antiangiogenic monotherapy gives a large initial injection to attain a 20: 1 ratio of tumor cell volume to supporting vasculature volume. It thereafter maintains this 20: 1 ratio via a continuous dose rate that is intensified over time. The optimal radiation monotherapy schedule is characterized by amodest dose intensification over time. The best performance is achieved by our optimal combination regimen, where the antiangiogenic treatment again maintains a constant tumor-to-vasculature ratio, but is administered in a dose-intensified manner only during the latter portion of the radiation fractionation schedule.
This is a preview of subscription content, access via your institution.
References
Barendsen, G. W. (1982). Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int. J. Radiat. Oncol. Biol. Phys. 8, 1981–1997.
Bertrand, O. F., R. Mongrain, E. Thorin and S. Lehnert (2000). In vitro response of human and porcine vascular cells exposed to high dose-rate γ-irradiation. Int. J. Radiat. Biol. 76, 999–1007.
Brenner, D. J., E. J. Hall, Y. Huang and R. K. Sachs (1994). Optimizing the time course of brachytherapy and other accelerated radiotherapeutic protocols. Int. J. Radiat. Oncol. Biol. Phys. 29, 893–901.
Browder, T., C. E. Butterfield, B. M. Kräling, B. Shi, B. Marshall, M. S. O’Reilly and J. Folkman (2000). Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878–1886.
Bryson, A. E. Jr. and Y.-C. Ho (1975). Applied Optimal Control, New York: John Wiley and Sons.
Burton, A. C. (1966). Rate of growth of solid tumors as a problem of diffusion. Growth 30, 157–176.
Conger, A. D. and M. C. Ziskin (1983). Growth of mammalian multicellular tumor spheroids. Cancer Res. 43, 556–560.
Dibrov, B. F., A. M. Zhabotinsky, Yu. A. Neyfakh, M. P. Orlova and L. I. Churikova (1983). Optimal scheduling for cell synchronization by cycle-phase-specific blockers. Math. Biosci. 66, 167–185.
Dibrov, B. F., A. M. Zhabotinsky, Yu. A. Neyfakh, M. P. Orlova and L. I. Churikova (1985). Mathematical model of cancer chemotherapy: periodic schedules of phase-specific cytotoxic-agent administration increasing the selectivity of therapy. Math. Biosci. 73, 1–31.
Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186.
Folkman, J. (2000). Cancer Medicine, 5th edn., J. F. Holland and E. Frei (Eds), Hamilton, London: B. C. Decker Inc., pp. 132–152.
Fowler, J. F. (1989). The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 62, 679–694.
Gorski, D. H. et al. (1999). Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 59, 3374–3378.
Gorski, D. H., H. J. Mauceri, R. M. Salloum, S. Gately, S. Hellman, M. A. Beckett, V. P. Sukhatme, G. A. Soff, D. W. Kufe and R. R. Weichselbaum (1998). Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res. 58, 5686–5689.
Griscelli, F. et al. (2000). Combined effects of radiotherapy and angiostatin gene therapy in glioma tumor model. PNAS 97, 6698–6703.
Hahnfeldt, P., D. Panigraphy, J. Folkman and L. Hlatky (1999). Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775.
Hanahan, D. and J. Folkman (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.
Harrison, J. M. (1985). Brownian Motion and Stochastic Flow Systems, New York: John Wiley and Sons.
Joki, T., M. Machluf, A. Atala, J. Zhu, N. T. Seyfried, I. F. Dunn, T. Abe, R. S. Carroll and P. M. Black (2001). Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat. Biotechnol. 19, 35–39.
Kisker, O. et al. (2001). Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res. 61, 7669–7674.
Luus, R. (2000). Iterative Dynamic Programming, Boca Raton, Florida: Chapman & Hall/CRC.
Mauceri, H. J. et al. (1998). Combined effects of angiostatin and ionizing radiation in antitumor therapy. Nature 394, 287–291.
Norton, L. and R. Simon (1977). Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61, 1307–1317.
Norton, L. and R. Simon (1986). The Norton-Simon hypothesis revisited. Cancer Treat. Rep. 70, 163–169.
O’Donoghue, J. A., M. Bardies and T. E. Wheldon (1995). Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J. Nuclear Med. 36, 1902–1909.
O’Reilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W.S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen and J. Folkman (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.
O’Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Cao, E. H. Sage and J. Folkman (1994). Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.
Pappova, N., E. Siracka, A. Vacek and J. Durkovsky (1982). Oxygen tension and prediction of the radiation response: polarographic study in human breast cancer. Neoplasma 29, 669–674.
Read, T. A., D. R. Sorenson, R. Mahesparan, P. O. Enger, R. Timpl, B. R. Olsen, M. H. B. Hjelsteun, O. Haraldseth and R. Bjerkvig (2001). Local endostatin treatment of glioma administered by microencapsulated producer cells. Nat. Biotechnol. 19, 29–34.
Sachs, R. K., P. Hahnfeld and D. J. Brenner (1997). The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int. J. Radiat. Biol. 72, 351–374.
Skehan, P. (1986). On the normality of growth dynamics of neoplasms in vivo: a data base analysis. Growth 50, 496–515.
Skipper, H. E., F. M. Schabel Jr. and W. S. Wilcox (1964). Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with ‘curability’ of experimental leukemia. Cancer Chemother. Rep. 35, 1–111.
Spratt, J. S., J. S. Meyer and J. A. Spratt (1996). Rates of growth of human neoplasms: part II. J. Surg. Oncol. 61, 68–83.
Thames, H. D. and J. H. Hendry (1987). Fractionation in Radiotherapy, London: Taylor & Francis.
Tucker, S. L. and J. M. G. Taylor (1996). Improved models of tumor cure. Int. J. Radiat. Oncol. Biol. Phys. 70, 539–553.
US National Cancer Institute, Cancer trials web site: http://cancertrials.nci.nih.gov/news/angio/angiomore.html.
van Putten, L. M. and R. F. Kallmann (1968). Oxygenation status of a transplantable tumor during fractionated radiation therapy. J. Natl. Cancer Inst. 40, 441–451.
Vanselow, B., M. J. Eble, V. Rudat, P. Wollensack, C. Conradt and A. Dietz (2000). Oxygenation of advanced head and neck cancer: prognostic marker for the response to primary radiochemotherapy. Otolaryngol. Head Neck Surg. 122, 856–862.
Vaupel, P., F. Kallinowski and P. Okunieff (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49, 6449–6465.
Vensim standard professional DSS, Ventana Systems Inc, 1988
Weidner, N., J. P. Semple, W. R. Welch and J. Folkman (1991). Tumor angiogenesis and metastasis—corrolation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8.
Wein, L. M., J. E. Cohen and J. T. Wu (2000). Dynamic optimization of a linear-quadratic model with incomplete repair and volume-dependent sensitivity and repopulation. Int. J. Radiat. Oncol. Biol. Phys. 47, 1073–1083.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ergun, A., Camphausen, K. & Wein, L.M. Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull. Math. Biol. 65, 407–424 (2003). https://doi.org/10.1016/S0092-8240(03)00006-5
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1016/S0092-8240(03)00006-5
Keywords
- Dose Rate
- Optimal Schedule
- Antiangiogenic Therapy
- Early Tissue
- Target Ratio