Growth and function of fungal mycelia in heterogeneous environments

  • Graeme P. Boswell
  • Helen Jacobs
  • Fordyce A. DavidsonEmail author
  • Geoffrey M. Gadd
  • Karl Ritz


As decomposer organisms, pathogens, plant symbionts and nutrient cyclers, fungi are of fundamental importance in the terrestrial environment. Moreover, in addition to their well-known applications in industry, many species also have great potential in environmental biotechnology. The study of this important class of organisms is difficult through experimental means alone due to the heterogeneity of their natural growth habitat and the microscopic scale of growth. In this work we present a mathematical model for colony expansion that is derived through consideration of the growth characteristics on the microscale. The model equations are of mixed hyperbolic-parabolic type and are treated with a numerical scheme that preserves positivity and conserves mass. The numerical solutions are compared against experimental results in a variety of environments. Thus the effect of different translocation mechanisms on fungal growth and function are identified. The derivation and analysis of an approximation to the full model yields further results concerning basic properties of mycelial growth. Finally, the acidification of the growth habitat is considered and the model thus provides important predictions on the functional consequences of the redistribution of internally-located material.


Fungal Growth Mineral Salt Medium Bromocresol Purple External Substrate Central Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexander, M. (1994). Biodegradation and Bioremediation, London: Academic Press.Google Scholar
  2. Alexopolous, C. J., C. W. Mims and M. Blackwell (1996). Introductory Mycology, 4th edn, New York: John Wiley and Sons.Google Scholar
  3. Bailey, D. J., W. Otten and C. A. Gilligan (2000). Saprophytic invasion by the soil-borne fungal plant pathogen Rhizoctonia solani and percolation thresholds. New Phytologist 146, 535–544.CrossRefGoogle Scholar
  4. Boddy, L. (1999). Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91, 13–32.Google Scholar
  5. Boswell, G. P., H. Jacobs, F. A. Davidson, G. M. Gadd and K. Ritz (2002). Functional consequences of nutrient translocation in mycelial fungi. J. Theor. Biol. 217, 459–477.MathSciNetCrossRefGoogle Scholar
  6. Boswell, G. P., H. Jacobs, F. A. Davidson, G. M. Gadd and K. Ritz (2003). A positive numerical scheme for a mixed-type partial differential equationmodel for fungal growth. Appl. Math. Comput. 138, 41–60.MathSciNetCrossRefGoogle Scholar
  7. Britton, N. F. (1986). Reaction Diffusion Equations and their Application to Biology, New York: Academic Press.Google Scholar
  8. Burgstaller, W. and F. Schinner (1993). Leaching of metals with fungi. J. Biotechnol. 27, 91–116.CrossRefGoogle Scholar
  9. Cartwright, D. K. and H. W. Spurr (1998). Biological control of Phytophthora parasitica var. nicotianae on tobacco seedling with non-pathogenic binucleate Rhizoctonia fungi. Soil Biol. Biochem. 30, 1879–1884.CrossRefGoogle Scholar
  10. Davidson, F. A. (1998). Modelling the qualitative response of fungal mycelia to heterogeneous environments. J. Theor. Biol. 195, 281–292.CrossRefGoogle Scholar
  11. Davidson, F. A. and S. Olsson (2000). Translocation induced outgrowth of fungi in nutrient-free environments. J. Theor. Biol. 205, 73–84.CrossRefGoogle Scholar
  12. Davidson, F. A., B. D. Sleeman, A. D. M. Rayner, J. W. Crawford and K. Ritz (1996). Context-dependent macroscopic patterns in growing and interacting mycelial networks. Proc. R. Soc. Lond., Biol. Sci. 263, 873–880.Google Scholar
  13. Dix, N. J. and J. Webster (1995). Fungal Ecology, London: Chapman and Hall.Google Scholar
  14. Edelstein, L. (1982). The propagation of fungal colonies: a model for tissue growth. J. Theor. Biol. 98, 679–701.MathSciNetCrossRefGoogle Scholar
  15. Edelstein, L. and L. A. Segel (1983). Growth and metabolism in mycelial fungi. J. Theor. Biol. 104, 187–210.CrossRefGoogle Scholar
  16. Edelstein-Keshet, L. and B. Ermentrout (1989). Models for branching networks in two dimensions. SIAM J. Appl. Math. 49, 1136–1157.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Fomina, M., K. Ritz and G. M. Gadd (2000). Negative fungal chemotropism to toxic metals. FEMS Microbiol. Lett. 193, 207–211.Google Scholar
  18. Gadd, G. M. (1992). Microbial control of heavy metal pollution, in Microbial Control of Pollution, J. C. Fry, G. M. Gadd, R. A. Herbert, C. W. Jones and I. Watson-Craik (Eds), Cambridge: Cambridge University Press, pp. 59–88.Google Scholar
  19. Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist 124, 25–60.CrossRefGoogle Scholar
  20. Gadd, G. M. (1999). Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47–92.CrossRefGoogle Scholar
  21. Gadd, G. M. (Ed.) (2001). Fungi in Bioremediation, Cambridge: Cambridge University Press, p. 481, ISBN: 0-521-78119-1.Google Scholar
  22. Gadd, G. M. and J. Sayer (2000). Fungal transformations of metals and metalloids, in Environmental Microbe-Metal Interactions, D. R. Lovley (Ed.), Washington: American Society for Microbiology, pp. 237–256.Google Scholar
  23. Gadd, G. M. and C. White (1993). Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol. 11, 353–359.CrossRefGoogle Scholar
  24. Garrill, A. (1995). Transport, in The Growing Fungus, N. A. R. Gow and G. M. Gadd (Eds), London: Chapman and Hall, pp. 163–181.Google Scholar
  25. Gerisch, A., D. F. Griffiths, R. Weiner and M. J. Chaplain (2001). A positive splitting method for mixed hyperbolic-parabolic systems. Numer. Methods Part. Diff. Eqns 17, 152–168.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Gerisch, A. and R. Weiner (2003). On the positivity of low order explicit Runge-Kutta schemes applied in splitting methods. Comput. Math. Appl. (in press).Google Scholar
  27. Gooday, G. W. (1975). Chemotaxis and chemotrophism in fungi and algae, in Primitive Sensory and Communication Systems, M. J. Carlile (Ed.), London: Academic Press, pp. 155–204.Google Scholar
  28. Gooday, G. W. (1995). The dynamics of hyphal growth. Mycol. Res. 99, 385–394.Google Scholar
  29. Gow, N. and G. M. Gadd (Eds.) (1995). The Growing Fungus, London: Chapman and Hall.Google Scholar
  30. Heath, I. B. (1990). Tip Growth in Plants and Fungi, London: Academic Press.Google Scholar
  31. Hundsdorfer, W., B. Koren, M. van Loon and J. G. Verwer (1995). A positive finite-difference advection scheme. J. Comput. Phys. 117, 35–46.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Jacobs, H., G. P. Boswell, F. A. Harper, K. Ritz, F. A. Davidson and G. M. Gadd (2002a). Solubilization of metal phosphates by Rhizoctonia solani. Mycol. Res. 106, 1468–1479.CrossRefGoogle Scholar
  33. Jacobs, H., G. P. Boswell, K. Ritz, F. A. Davidson and G. M. Gadd (2002b). Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol. Ecol. 40, 65–71.Google Scholar
  34. Jin, X., C. K. Hayes and G. E. Harmon (1992). Principles in the development of biological control systems employing Trichoderma species against soil-borne plant pathogenic fungi, in Frontiers in Industrial Mycology, G. F. Leatham (Ed.), London: Chapman and Hall, pp. 174–195.Google Scholar
  35. LeVeque, R. J. (1992). Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH Zürich, Basel: Birkhäuser.zbMATHGoogle Scholar
  36. LeVeque, R. J. (1996). High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33, 627–665.zbMATHMathSciNetCrossRefGoogle Scholar
  37. Littlefield, L. J., R. D. Wilcoxson and T. W. Sudia (1964). Translocation of Phosphorus-32 in Rhizoctonia solani. Phytopathology 55, 536–542.Google Scholar
  38. McCabe, P. M., M. P. Gallagher and J. W. Deacon (1999). Microscopic observation of perfect hyphal fusion in Rhizoctonia solani. Mycol. Res. 103, 487–490.CrossRefGoogle Scholar
  39. Metting, F. B. (1992). Structure and physiological ecology of soil microbial communities, in Soil Microbial Ecology, Applications and Environmental Management, F. B. Metting (Ed.), New York: Marcel Dekker, pp. 3–25.Google Scholar
  40. Morley, G. F., J. A. Sayer, S. C. Wilkinson, M. M. Gharieb and G. M. Gadd (1996). Fungal sequestration, solubilization and transformation of toxic metals, in Fungi and Environmental Change, J. C. Frankland, N. Magan and G. M. Gadd (Eds), Cambridge: Cambridge University Press, pp. 235–256.Google Scholar
  41. Murray, J. D. (1989). Mathematical Biology, 2nd edn, London: Springer.zbMATHGoogle Scholar
  42. Ogoshi, A. (1987). Ecology and pathology of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Annu. Rev. Phytopathol. 25, 125–143.Google Scholar
  43. Olsson, S. (1994). Uptake of glucose and phosphorus by growing colonies of Fusarium oxysporum as qualified by image analysis. Exp. Mycol. 18, 33–47.CrossRefGoogle Scholar
  44. Olsson, S. (1995). Mycelial density profiles of fungi on heterogeneous media and their interpretation in terms of nutrient reallocation patterns. Mycol. Res. 99, 143–183.Google Scholar
  45. Olsson, S. and D. H. Jennings (1991). A glass fibre filter technique for studying nutrient uptake by fungi: the technique used on colonies grown on nutrient gradients of carbon and phosphorus. Exp. Mycol. 15, 292–301.CrossRefGoogle Scholar
  46. Otten, W., C. A. Gilligan, C. W. Watts, A. R. Dexter and D. Hall (1999). Continuity of air-filled pores and invasion thresholds for a soil-borne fungal plant pathogen, Rhizoctonia solani. Soil Biol. Biochem. 31, 1803–1810.CrossRefGoogle Scholar
  47. Paustian, K. and J. Schnürer (1987). Fungal growth response to carbon and nitrogen limitation: a theoretical model. Soil Biol. Biochem. 19, 613–620.CrossRefGoogle Scholar
  48. Persson, C., S. Olsson and H.-B. Jansson (2000). Growth of Arthrobotrys superba from a birch wood food base into soil determined by radioactive tracing. FEMS Microbiol. Ecol. 31, 47–51.Google Scholar
  49. Prosser, J. I. (1995). Mathematical modelling of fungal growth, in The Growing Fungus, N. A. R. Gow and G. M. Gadd (Eds), London: Chapman and Hall, pp. 319–335.Google Scholar
  50. Prosser, J. I. and A. P. J. Trinci (1979). A model for hyphal growth and branching. J. General Microbiol. 111, 153–164.Google Scholar
  51. Ritz, K. (1995). Growth responses of some soil fungi to spatially heterogeneous nutrients. FEMS Microbiol. Ecol. 16, 269–280.Google Scholar
  52. Ritz, K. and J. W. Crawford (1990). Quantification of the fractal nature of colonies of Trichoderma viride. Mycol. Res. 94, 1138–1141.CrossRefGoogle Scholar
  53. Roe, P. L. (1986). Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mechanics 18, 337–365.zbMATHMathSciNetCrossRefGoogle Scholar
  54. Segel, L. A. (Ed.) (1980). Mathematical Models in Molecular and Cellular Biology, Cambridge, U.K.: Cambridge University Press.zbMATHGoogle Scholar
  55. Sietsma, J. H., H. A. B. Wosten and J. G. H. Wessels (1995). Cell wall growth and protein secretion in fungi. Can. J. Botany 73(Suppl. 1), S388–S395.Google Scholar
  56. Sweby, P. K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011.zbMATHMathSciNetCrossRefGoogle Scholar
  57. Thornton, C. R. and C. A. Gilligan (1999). Quantification of the effect of the hyperparasite Trichoderma harzianum on the saprotrophic growth dynamics of Rhizoctonia solani in compost using a monoclonal antibody-based ELISA. Mycol. Res. 103, 443–448.CrossRefGoogle Scholar
  58. Tobin, J. M., C. White and G. M. Gadd (1994). Metal accumulation by fungi—applications in environmental biotechnology. J. Ind. Microbiol. 13, 126–130.CrossRefGoogle Scholar
  59. Trujillo, E. E. (1992). Bioherbicides, in Frontiers in Industrial Mycology, G. F. Leatham (Ed.), London: Chapman and Hall, pp. 196–211.Google Scholar
  60. Wainwright, M. (1988). Metabolic diversity of fungi in relation to growth and mineral cycling in soil—a review. Trans. British Mycol. Soc. 90, 159–170.CrossRefGoogle Scholar
  61. Watters, M. K. and A. J. F. Griffiths (2001). Tests of a cellular model for constant branch distribution in the filamentous fungus Neurospora crassa. Appl. Environ. Microbiol. 67, 1788–1792.CrossRefGoogle Scholar
  62. Wessels, J. G. H. (1993). Wall growth, protein excretion and morphogenesis in fungi. New Phytologist 123, 397–413.CrossRefGoogle Scholar
  63. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. J. Exp. Botany 52, 487–511.Google Scholar

Copyright information

© Society for Mathematical Biology 2003

Authors and Affiliations

  • Graeme P. Boswell
    • 1
  • Helen Jacobs
    • 2
  • Fordyce A. Davidson
    • 1
    Email author
  • Geoffrey M. Gadd
    • 2
  • Karl Ritz
    • 3
  1. 1.Department of MathematicsUniversity of DundeeDundeeUK
  2. 2.Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life SciencesUniversity of DundeeDundeeUK
  3. 3.Soil-Plant Dynamics GroupScottish Crop Research InstituteInvergowrieUK

Personalised recommendations