Advertisement

Theory in Biosciences

, Volume 125, Issue 2, pp 93–121 | Cite as

Geometric robustness theory and biological networks

  • Nihat Ay
  • David C. Krakauer
Article

Abstract

We provide a geometric framework for investigating the robustness of information flows over biological networks. We use information measures to quantify the impact of knockout perturbations on simple networks. Robustness has two components, a measure of the causal contribution of a node or nodes, and a measure of the change or exclusion dependence, of the network following node removal. Causality is measured as statistical contribution of a node to network function, wheras exclusion dependence measures a distance between unperturbed network and reconfigured network function. We explore the role that redundancy plays in increasing robustness, and how redundacy can be exploited through error-correcting codes implemented by networks. We provide examples of the robustness measure when applied to familiar boolean functions such as the AND, OR and XOR functions. We discuss the relationship between robustness measures and related measures of complexity and how robustness always implies a minimal level of complexity.

Keywords

Robustness Complexity Networks Information Geometry Knockouts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Jeong, H., Barabasi, A.L., 2000. Error and attack tolerance of complex networks. Nature 406, 378–382.PubMedCrossRefGoogle Scholar
  2. Amari, S., 1985. Differential-Geometric Methods in Statistics, Lecture Notes in Statistics, vol. 28. Springer, Heidelberg.Google Scholar
  3. Amari, S., Nagaoka, H., 2000. Methods of Information Geometry, AMS Translations of Mathematical Monographs, vol. 191. Oxford University Press, Oxford.Google Scholar
  4. Barkai, N., Leibler, S., 1997. Robustness in simple biochemical networks. Nature 376, 307–312.Google Scholar
  5. Bialek, W., Nemenman, I., Tishby, N., 2001. Predictability, Complexity, and Learning. Neural Comput. 13, 2409–2463.PubMedCrossRefGoogle Scholar
  6. Callaway, D.S., Newman, J.E.J., Strogatz, S.H., Watts, D.J., 2000. Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471.PubMedCrossRefGoogle Scholar
  7. Chosmky, N., 1981. Principles and parameters in syntactic theory. In: Hornstein, N., Lightfoot, D. (Eds.), Explations in Linguistics. Longman, London.Google Scholar
  8. Cover, T.M., Thomas J.A., 2001. Elements of Information Theory. Wiley, New York.Google Scholar
  9. Crutchfield, J.P., Packard, N.H., 1983. Symbolic, dynamics of noisy chaos. Physica D 7, 201–223.CrossRefGoogle Scholar
  10. de Visser, J.A.G.M., Hermisson, J., Wagner, G.P., Meyers, L.A., Bagheri-Chaichian, H., Blanchard, J.L., Chao, L., Cheverud, J.M., Elena, S.F., Fontana, W. Gibson, G., Hansen, T.F., Krakauer, D., Lewontin, R.C., Ofria, C., Rice, S.H., von Dassow, G., Wagner, A., Whitlock, M.C., 2003. Evolution and detection of genetic robustness. Evolution 57, 1959–1972.PubMedCrossRefGoogle Scholar
  11. Dunne, J.A., Williams, R.J., Martinez, N.D., 2002. Networks structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558.CrossRefGoogle Scholar
  12. Erb, I., Ay, N., 2003. Multi-information in the thermodynamic limit. J. Stat. Phys. 115, 949–976.CrossRefGoogle Scholar
  13. Flack, J., Girvan, M., de Waal, F., Krakauer, D.C., 2006. Policing stabilizes construction of social niches in primates. Nature, 439, 426–429.PubMedCrossRefGoogle Scholar
  14. Friedberg, E.C., 1985. DNA Repair. W.H. Freeman, New York.Google Scholar
  15. Grassberger, P., 1986. Toward a quantitative theory of self-generated complexity. Int. J. Theor. Phys. 25 (9), 907–938.CrossRefGoogle Scholar
  16. Krakauer, D.C., 2003. Genetic Redundancy, Evolution and Comparative Genomics. Encyclopedia of the human genome. Nature Publishing Group. MacMillan Publishers, New York.Google Scholar
  17. Krakauer, D.C., 2004. Robustness in biological systems: a provisional taxonomy. In: T.S. Dreisboeck, J. Yasha Kresh. (Eds.), Complex Systems Science in Biomedicine, Kluwer Academic Press, Dordrecht.Google Scholar
  18. Krakauer, D.C., Nowak, M.A., 1999. Evolutionary preservation of redundant duplicated genes. Semin. Cell. Dev. Biol. 10, 555–559.PubMedCrossRefGoogle Scholar
  19. Krakauer, D.C., Plotkin, J.B., 2002. Redundancy, antiredundancy, and the robustness of genomes. Proc. Natl. Acad. Sci. USA 99, 1405–1409.PubMedCrossRefGoogle Scholar
  20. Krakauer, D.C., Plotkin, J.B., 2004. Principles and parameters of molecular robustness. In: Jen, E. (Ed.), Robust Design: A Repertoire for Biology, Ecology and Engineering. Oxford University Press, Oxford, pp. 115–133.Google Scholar
  21. Newman, M., 2003. The structure and function of complex networks. SIAM Rev. 45, 167–256.CrossRefGoogle Scholar
  22. Pearl, J., 2000. In: Causality. Cambridge University Press, Cambridge.Google Scholar
  23. Peterson, W.W., Weldon, E.J., 1972. Error Correcting Codes. MIT Press, Cambridge, MA.Google Scholar
  24. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L., 1994. From sequences to shapes and back: a case study in RNA secondary structures. Proc. Roy. Soc. (London) B, 255, 279–284 (1994).CrossRefGoogle Scholar
  25. Shmulevich, I., Lahdesmaki, H., Dougherty, E.R., Zhang, W., 2003. The role of certain postclasses in Boolean network models of genetic networks. Proc. Natl. Acad. Sci. USA 100, 10734–10739.PubMedCrossRefGoogle Scholar
  26. Strogatz, S.H., 2001. Exploring complex networks. Nature 410, 268–276.PubMedCrossRefGoogle Scholar
  27. Tononi, G., Sporns, O., Edelman, G.M., 1994. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA 91, 5033–5037.PubMedCrossRefGoogle Scholar
  28. Tyson, J.J., Chen, K., Novak, B., 2001. Network dynamics and cell physiology. Nat. Rev. Mol. Bio. 2, 908–916.CrossRefGoogle Scholar
  29. van Baalen, M., Krivan, V., van Rijn, P.C.J., Sabelis, M.W., 2001. Alternative food, switching predators, and the persistence of predator-prey systems. Am. Nat. 157.Google Scholar
  30. Wagner, A., 1994. Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization. Proc. Natl. Acad. Sci. USA 91, 4387–4391.PubMedCrossRefGoogle Scholar
  31. Wagner, A., 2000. Robustness against mutations in genetic networks of yeast. Nat. Genet. 24, 355–361.PubMedCrossRefGoogle Scholar
  32. Wagner, A., 2005. Robustness and Evolvability in Living Systems. Princeton University Press, Princeton, NJ.Google Scholar

Copyright information

© Elsevier GmbH. All rights reserved 2006

Authors and Affiliations

  1. 1.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.Santa Fe InstituteSante FeUSA

Personalised recommendations