Theory in Biosciences

, Volume 124, Issue 3–4, pp 317–333 | Cite as

Evolutionary morphology and Evo-devo: Hierarchy and novelty

  • Alan C. LoveEmail author
Special Papers: From Evolutionary Morphology to the Modern Synthesis and “Evo-Devo”


Although the role of morphology in evolutionary theory remains a subject of debate, assessing the contributions of morphological investigation to evolutionary developmental biology (Evo-devo) is a more circumscribed issue of direct relevance to ongoing research. Historical studies of morphologically oriented researchers and the formation of the Modern Synthesis in the Anglo-American context identify a recurring theme: the synthetic theory of evolution did not capture multiple levels of biological organization. When this feature is incorporated into a philosophical framework for explaining the origin of evolutionary innovations and novelties (a core domain of inquiry in Evo-devo) two specific roles for morphology can be described: (1) the conceptualization and operational identification of the targets of explanation; and (2) the elucidation of causal interactions at higher levels of organization during ontogeny and through evolutionary time. These roles are critical components of any adequate explanation of innovation and novelty though not exhaustive of the parts played by morphology in evolutionary investigation. They also invite reflection on what counts as an evolutionary cause in contemporary evolutionary biology.


Causation Development Evolutionary theory Innovation Modern Synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R.M., 1989. Dynamics of Dinosaurs & Other Extinct Giants. Columbia University Press, New York.Google Scholar
  2. Alexander, R.M., 2003. Achievements and Limitations in the Mechanics of Extinct Animals. In: Bels, V.L., Gasc, J.-P., Casinos, A. (Eds.), Vertebrate Biomechanics and Evolution. BIOS Scientific Publishers Ltd, Oxford, pp. 11–21.Google Scholar
  3. Amundson, R., 2005. The Changing Role of the Embryo in Evolutionary Thought: Structure and Synthesis. Cambridge University Press, New York.Google Scholar
  4. Arthur, W., 1997. The Origin of Animal Body Plans: A Study in Evolutionary Developmental Biology. Cambridge University Press, New York.Google Scholar
  5. Bar-Yam, Y., 1997. Dynamics of Complex Systems. Addison-Wesley, Reading, MA.Google Scholar
  6. Berrill, N.J., 1971. Developmental Biology. McGraw-Hill Book Company, New York.Google Scholar
  7. Block, B.A., 1991. Evolutionary novelties: how fish have built a heater out of muscle. Am. Zool. 31, 726–742.Google Scholar
  8. Brandon, R., 1996. Reductionism Versus Holism Versus Mechanism. In: Brandon, R. (Ed.), Concepts and Methods in Evolutionary Biology. Cambridge University Press, Cambridge, pp. 179–204.Google Scholar
  9. Budd, G.E., 2001. Why are arthropods segmented? Evol. Dev. 3, 332–342.PubMedCrossRefGoogle Scholar
  10. Budd, G.E., 2006. On the origin and evolution of complex characters. Biol. Rev., in press.Google Scholar
  11. Carroll, S.B., Grenier, J.K., Weatherbee, S.D., 2001. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Blackwell Science, Inc., Malden, MA.Google Scholar
  12. Coleman, W., 1980. Morphology in the evolutionary synthesis. In: Mayr, E., Provine, W.B. (Eds.), The Evolutionary Synthesis: Perspectives on the Unification of Biology. Harvard University Press, Cambridge, MA, pp. 174–180.Google Scholar
  13. Craver, C.F., 2001. Role functions, mechanisms, and hierarchy. Philos. Sci. 68, 53–74.CrossRefGoogle Scholar
  14. Darwin, C., 1964 [1859]. On the Origin of Species: A Facsimile of the First Edition. Harvard University Press, Cambridge, MA.Google Scholar
  15. Davidson, E.H., 2001. Genomic Regulatory Systems: Development and Evolution. Academic Press, San Diego.Google Scholar
  16. Davis, D.D., 1949. Comparative anatomy and the evolution of vertebrates. In: Jepsen, G.L., Mayr, E., Simpson, G.G. (Eds.), Genetics, Paleontology, and Evolution. Princeton University Press, Princeton, NJ, pp. 64–89.Google Scholar
  17. Davis, D.D., 1960. The Proper Goal of Comparative Anatomy. In: Purchon, R.D. (Ed.), Proceedings of the Centenary and Bicentenary Congress of Biology, Singapore, December 2–9, 1958. University of Malaya Press, Singapore, pp. 44–50.Google Scholar
  18. Davis, D.D., 1964. The Giant Panda: A Morphological Study of Evolutionary Mechanisms. Chicago Natural History Museum, Chicago.Google Scholar
  19. Dullemeijer, P., 1974. Concepts and Approaches in Animal Morphology. Van Gorcum & Comp. B.V., Assen, The Netherlands.Google Scholar
  20. Dullemeijer, P., 1981. Functional morphology and evolutionary biology. Acta Biotheor. 29, 151–250.CrossRefGoogle Scholar
  21. Endler, J.A., 1986. Natural Selection in the Wild. Princeton University Press, Princeton, NJ.Google Scholar
  22. Eriksson, B.J., Larson, E.T., Thörnqvist, P.-O., Tait, N.N., Budd, G.E., 2005. Expression of engrailed in the Developing Brain and Appendages of the Onychophoran Euperipatoides kanangrensis (Reid). J. Exp. Zool. (Mol. Dev. Evol.) 304B, 220–228.CrossRefGoogle Scholar
  23. Galis, F., 1996. The application of functional morphology to evolutionary studies. Trends Ecol. Evol. 11, 124–129.CrossRefGoogle Scholar
  24. Gans, C., 1985. Vertebrate morphology: tale of a phoenix. Am. Zool. 25, 689–694.Google Scholar
  25. Gerhart, J., Kirschner, M., 1997. Cells, Embryos, and Evolution: Towards a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability. Blackwell Science, Inc., Malden, MA.Google Scholar
  26. Ghiselin, M.T., 1980. The failure of morphology to assimilate Darwinism. In: Mayr, E., Provine, W.B. (Eds.), The Evolutionary Synthesis: Perspectives on the Unification of Biology. Harvard University Press, Cambridge, MA, pp. 180–193.Google Scholar
  27. Ghiselin, M.T., 1997. Metaphysics and the Origin of Species. SUNY Press, Albany.Google Scholar
  28. Gillis, G.B., Biewener, A.A., 2003. The importance of functional plasticity in the design and control of the vertebrate musculoskeletal system. In: Bels, V.L., Gasc, J.-P., Casinos, A. (Eds.), Vertebrate Biomechanics and Evolution. BIOS Scientific Publishers Ltd, Oxford, pp. 57–72.Google Scholar
  29. Gompel, N., Prud'homme, B., Wittkopp, P.J., Kassner, V.A., Carroll, S.B., 2005. Chance caught on the wing: Cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433, 481–487.PubMedCrossRefGoogle Scholar
  30. Grene, M., 1987. Hierarchies in biology. Am. Sci. 75, 504–510.Google Scholar
  31. Hall, B.K., 1999. Evolutionary Developmental Biology. Kluwer Academic Publishers, Dordrecht.Google Scholar
  32. Hanken, J., 1984. Miniaturization and its effects on cranial morphology in plethodontid salamanders, Genus Thorius (Amphibia: Plethodontidae): 1. Osteological variation. Biol. J. Linn. Soc. 23, 55–76.CrossRefGoogle Scholar
  33. Hanken, J., 1985. Morphological novelty in the limb skeleton accompanies miniaturization in salamanders. Science 229, 871–874.PubMedCrossRefGoogle Scholar
  34. Hanken, J., 1993. Model systems versus outgroups: alternative approaches to the study of head development and evolution. Am. Zool. 33, 448–456.Google Scholar
  35. Hanken, J., Wake, M.H., 1991. Introduction to the symposium: experimental approaches to the analysis of form and function. Am. Zool. 31, 603–604.Google Scholar
  36. Hanken, J., Wake, D.B., 1993. Miniaturization of body size: organismal consequences and evolutionary significance. Annu. Rev. Ecol. Syst. 24, 501–519.CrossRefGoogle Scholar
  37. Hinman, V.F., Nguyen, A.T., Cameron, R.A., Davidson, E.H., 2003. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc. Natl. Acad. Sci. USA 100, 13356–13361.PubMedCrossRefGoogle Scholar
  38. Kauffman, S.A., 1993. The Origins of Order: Self-Organisation and Selection in Evolution. Oxford University Press, New York.Google Scholar
  39. Korn, R.W., 1999. Biological organization—a new look at an old problem. BioScience 49, 51–57.CrossRefGoogle Scholar
  40. Korn, R.W., 2002. Biological hierarchies, their birth, death and evolution by natural selection. Biol. Philos. 17, 199–221.CrossRefGoogle Scholar
  41. Lauder, G.V., 1981. Form and function: structural analysis in evolutionary morphology. Paleobiology 7, (4), 430–442.Google Scholar
  42. Lauder, G.V., 1982. Historical biology and the problem of design. J. Theor. Biol. 97, 57–67.PubMedCrossRefGoogle Scholar
  43. Lauder, G.V., 1990. Functional morphology: studying functional patterns in an historical context. Annu. Rev. Ecol. Syst. 21, 317–340.CrossRefGoogle Scholar
  44. Lauder, G.V., 1991. Biomechanics and evolution: integrating physical and historical biology in the study of complex systems. In: Rayner, J.M.V., Wooton, R.J. (Eds.), Biomechanics in Evolution. Cambridge University Press, Cambridge, pp. 1–19.Google Scholar
  45. Lauder, G.V., 1995. On the inference of function from structure. In: Thomason, J.J. (Ed.), Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge, pp. 1–18.Google Scholar
  46. Lauder, G.V., Huey, R.B., Monson, R.K., Jensen, R.J., 1995. Systematics and the study of organismal form and function. BioScience 45, 696–704.CrossRefGoogle Scholar
  47. Lewontin, R., 1970. The units of selection. Annu. Rev. Ecol. Syst. 1, 1–14.CrossRefGoogle Scholar
  48. Liem, K.F., Wake, D.B., 1985. Morphology: current approaches and concepts. In: Hildebrand, M., Bramble, D.M., Liem, K.F., Wake, D.B. (Eds.), Functional Vertebrate Morphology. The Belknap Press of Harvard University Press, Cambridge, MA, pp. 366–377.Google Scholar
  49. Love, A.C., 2003. Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biol. Philos. 18, 309–345.CrossRefGoogle Scholar
  50. Love, A.C., 2005. Explaining evolutionary innovation and novelty: a historical and philosophical study of biological concepts. Ph.D. Thesis, Department of History and Philosophy of Science, University of Pittsburgh, p. 598.Google Scholar
  51. Love, A.C., 2006. Morphological and paleontological perspectives for a history of Evo-devo. In: Maienschein, J., Laubichler, M. (Eds.), From Embryology to Evo-devo, MIT Press, Cambridge, MA in press.Google Scholar
  52. Love, A.C., Raff, R.A., 2003. Knowing your ancestors: themes in the history of Evo-devo. Evol. Dev. 5, 327–330.PubMedCrossRefGoogle Scholar
  53. Love, A.C., Raff, R.A., 2006. Larval ectoderm, organizational homology, and the origins of evolutionary novelty. J. Exp. Zool. (Mol. Dev. Evol.), in press.Google Scholar
  54. McShea, D.W., 1996. Perspective: complexity and evolution: is there a trend? Evolution 50, 477–492.CrossRefGoogle Scholar
  55. McShea, D.W., 2000. Functional complexity in organisms: parts as proxies. Biol. Philos. 15, 641–668.CrossRefGoogle Scholar
  56. McShea, D.W., 2001. Parts and integration: consequences of hierarchy. In: Jackson, J.B.C., Lidgard, S., McKinney, F.K. (Eds.), Evolutionary Patterns: Growth, Form, and Tempo in the Fossil Record. University of Chicago Press, Chicago, London, pp. 27–60.Google Scholar
  57. Metscher, B.D., Ahlberg, P.E., 1999. Zebrafish in context: uses of a laboratory model in comparative studies. Dev. Biol. 210, 1–14.PubMedCrossRefGoogle Scholar
  58. Moss, L., 2003. What Genes Can't Do. MIT Press, A Bradford Book, Cambridge, MA.Google Scholar
  59. Müller, G.B., Newman, S.A., 2003. Origination of organismal form: the forgotten cause in evolutionary theory. In: Müller, G.B., Newman, S.A. (Eds.), Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. A Bradford Book, The MIT Press, Cambridge, MA, pp. 3–10.Google Scholar
  60. Müller, G.B., Wagner, G.P., 1991. Novelty in evolution: restructuring the concept. Annu. Rev. Ecol. Syst. 22, 229–256.CrossRefGoogle Scholar
  61. Müller, G.B., Wagner, G.P., 2003. Innovation. In: Hall, B.K., Olson, W.M. (Eds.), Keywords and Concepts in Evolutionary Developmental Biology. Harvard University Press, Cambridge, MA, pp. 218–227.Google Scholar
  62. Newman, S.A., 2003. Hierarchy. In: Hall, B.K., Olson, W.M. (Eds.), Keywords and Concepts in Evolutionary Developmental Biology. Harvard University Press, Cambridge, MA, pp. 169–174.Google Scholar
  63. Olson, E.C., 1960. Morphology, paleontology, and evolution. In: Tax, S. (Ed.), Evolution After Darwin, vol. 1: The Evolution of Life, Its Origin, History and Future. University of Chicago Press, Chicago, pp. 523–545.Google Scholar
  64. Olson, E.C., 1965. Summary and comment. Syst. Zool. 14, 337–342.CrossRefGoogle Scholar
  65. Olsson, L., Hall, B.K., 1999. Introduction to the symposium: developmental and evolutionary perspectives on major transformations in body organization. Am. Zool. 39, 612–616.Google Scholar
  66. Pass, G., 2000. Accessory pulsatile organs: evolutionary innovations in insects. Annu. Rev. Entomol. 45, 495–518.PubMedCrossRefGoogle Scholar
  67. Plotnick, R.E., Baumiller, T.K., 2000. Invention by evolution: functional analysis in paleobiology. In: Erwin, D.H., Wing, S.L. (Eds.), Deep Time: Paleobiology's Perspective. Allen Press, The Paleontological Society, Lawrence, KS, pp. 305–323.Google Scholar
  68. Raff, R.A., 1996. The Shape of Life: Genes, Development and the Evolution of Animal Form. University of Chicago Press, Chicago.Google Scholar
  69. Raff, R.A., 2000. Evo-devo: the evolution of a new discipline. Nat. Rev. Genet. 1, 74–79.PubMedCrossRefGoogle Scholar
  70. Reilly, S.M., 1994. The ecologocial morphology of metamorphosis: heterochrony and the evolution of feeding mechanisms in salamanders. In: Wainwright, P.C., Reilly, S.M. (Eds.), Ecological Morphology: Integrative Organismal Biology. University of Chicago Press, Chicago, pp. 319–338.Google Scholar
  71. Richardson, M.K., Wright, G.M., 2003. Developmental transfromtions in a normal series of embryos of the sea lamprey Petromyzon marinus (Linnaeus). J. Morphol. 257, 348–363.PubMedCrossRefGoogle Scholar
  72. Robert, J.S., 2004. Embryology, Epigenesis, and Evolution: Taking Development Seriously. Cambridge University Press, New York.Google Scholar
  73. Roth, G., Wake, D.B., 1989. Conservatism and Innovation in the Evolution of Feeding in Vertebrates. In: Wake, D.B., Roth, G. (Eds.), Complex Organismal Functions: Integration and Evolution in Vertebrates. Wiley, New York, pp. 7–21.Google Scholar
  74. Salthe, S.N., 1985. Evolving Hierarchical Systems: Their Structure and Representation. Columbia University Press, New York.Google Scholar
  75. Salthe, S.N., 1993. Development and Evolution: Complexity and Change in Biology. A Bradford Book, The MIT Press, Cambridge, MA.Google Scholar
  76. Schaefer, S.A., Lauder, G.V., 1986. Historical transformation of functional design: evolutionary morphology of feeding mechanisms in loricarioid catfishes. Syst. Zool. 35, 489–508.CrossRefGoogle Scholar
  77. Schwenk, K., 2001. Functional units and their evolution. In: Wagner, G.P. (Ed.), The Character Concept in Evolutionary Biology. Academic Press, San Diego, pp. 167–200.Google Scholar
  78. Schwenk, K., Wagner, G.P., 2001. Function and the evolution of phenotypic stability: connecting pattern and process. Am. Zool. 41, 552–563.CrossRefGoogle Scholar
  79. Schwenk, K., Wake, D.B., 1993. Prey processing in Leurognathus marmoratus and the evolution of form and function in desmognathine salamanders (Plethodontidae). Biol. J. Linn. Soc. 49, 141–162.Google Scholar
  80. Shubin, N.H., Marshall, C.R., 2000. Fossils, genes, and the origin of novelty. In: Erwin, D.H., Wing, S.L. (Eds.), Deep Time: Paleobiology's Perspective. Allen Press, The Paleontological Society, Lawrence, KS, pp. 324–340.Google Scholar
  81. Shubin, N., Wake, D.B., 1996. Phylogeny, variation, and morphological integration. Am. Zool. 36, 51–60.Google Scholar
  82. Shubin, N., Wake, D.B., Crawford, A.J., 1995. Morphological variation in the limbs of Taricha granulosa (Caudata: Salamandridae): evolutionary and phylogenetic implications. Evolution 49, 874–884.CrossRefGoogle Scholar
  83. Simon, H.A., 1977 [1973]. The organization of complex systems. In: Models of Discovery, and Other Topics in the Methods of Science. D. Reidel Publishing Company, Dordrecht, pp. 245–261.Google Scholar
  84. Stern, D.L., 2000. Perspective: evolutionary developmental biology and the problem of variation. Evolution 54, 1079–1091.PubMedGoogle Scholar
  85. Thomson, K.S., 1988. Morphogenesis and Evolution. Oxford University Press, New York.Google Scholar
  86. Thomson, K.S., 1992. Macroevolution: the morphological problem. Am. Zool. 32, 106–112.Google Scholar
  87. Valentine, J.W., May, C.L., 1996. Hierarchies in biology and paleontology. Paleobiology 22, 23–33.Google Scholar
  88. Wagner, G.P., 2000. What is the promise of developmental evolution? Part I: why is developmental biology necessary to explain evolutionary innovations?. J. Exp. Zool. (Mol. Dev. Evol.) 288, 95–98.CrossRefGoogle Scholar
  89. Wagner, G.P. (Ed.), 2001a. The Character Concept in Evolutionary Biology. Academic Press, San Diego.Google Scholar
  90. Wagner, G.P., 2001b. What is the promise of developmental evolution? Part II: a causal explanation of evolutionary innovations may be impossible. J. Exp. Zool. (Mol. Dev. Evol.) 291, 305–309.CrossRefGoogle Scholar
  91. Wagner, G.P., Misof, B.Y., 1993. How can a character be developmentally constrained despite variation in developmental pathways? J. Evol. Biol. 6, 449–455.CrossRefGoogle Scholar
  92. Wagner, G.P., Larsson, H.C.E., 2003. What is the promise of developmental evolution? III. the crucible of developmental evolution. J. Exp. Zool. (Mol. Dev. Evol.) 300B, 1–4.CrossRefGoogle Scholar
  93. Wagner, G.P., Laubichler, M.D., 2001. Character identification: the role of the organism. In: Wagner, G.P. (Ed.), The Character Concept in Evolutionary Biology. Academic Press, San Diego, pp. 141–163.Google Scholar
  94. Wagner, G.P., Chiu, C.-H., Laubichler, M., 2000. Developmental evolution as a mechanistic science: the inference from developmental mechanisms to evolutionary processes. Am. Zool. 40, 819–831.CrossRefGoogle Scholar
  95. Waisbren, S.J., 1988. The importance of morphology in the evolutionary synthesis as demonstrated by the contributions of the Oxford group: Goodrich, Huxley, and De Beer. J. Hist. Biol. 21, 291–330.CrossRefGoogle Scholar
  96. Wake, D.B., 1982. Functional and evolutionary morphology. Perspect. Biol. Med. 25, 603–620.PubMedGoogle Scholar
  97. Wake, M.H., 1991. The impact of functional morphology and biomechanics on studies of evolutionary biology. In: Dudley, E.C. (Ed.), The Unity of Evolutionary Biology: Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology, vol. 1. Dioscorides Press, Portland, OR, pp. 555–557.Google Scholar
  98. Wake, M.H., 1992. Morphology, the study of form and function, in modern evolutionary biology. In: Futuyma, D., Antonovics, J. (Eds.), Oxford Surveys in Evolutionary Biology, vol. 8. Oxford University Press, New York, pp. 289–346.Google Scholar
  99. Wake, D.B., Hanken, J., 1996. Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis?. Int. J. Dev. Biol. 40, 859–869.PubMedGoogle Scholar
  100. Wake, D.B., Larson, A., 1987. Multidimensional analyses of an evolving lineage. Science 238, 42–48.PubMedCrossRefGoogle Scholar
  101. West-Eberhard, M.J., 2003. Developmental Plasticity and Evolution. Oxford University Press, New York.Google Scholar
  102. Wilga, C.D., Hueter, R.E., Wainwright, P.C., Motta, P.J., 2001. Evolution of upper jaw protrusion mechanisms in elasmobranchs. Am. Zool. 41, 1248–1257.CrossRefGoogle Scholar
  103. Wimsatt, W.C., 1976a. Complexity and organization. In: Grene, M., Mendelsohn, E. (Eds.), Topics in Philosophy of Biology. D. Reidel, Dordrecht, pp. 174–193.Google Scholar
  104. Wimsatt, W.C., 1976b. Reductive explanation: a functional account. In: Cohen, R.S. (Ed.), Proceedings of the Philosophy of Science Association, 1974, D. Reidel Publishing Company, Dordrecht, Holland, pp. 671–710.Google Scholar
  105. Wimsatt, W.C., 1986. Forms of aggregativity. In: Donagan, A., Perovich, Jr., A.N., Wedin, M.V. (Eds.), Human Nature and Natural Knowledge. D. Reidel Publishing Company, Dordrecht, pp. 259–291.Google Scholar
  106. Wimsatt, W.C., 1997. Aggregativity: reductive heuristics for finding emergence. Philos. Sci. 64, S372-S384.CrossRefGoogle Scholar
  107. Witmer, L.M., Sampson, S.D., Solounias, N., 1999. The proboscis of tapirs (Mammalia: Perissodactyla): a case study in novel narial anatomy. J. Zool. 249, 249–267.CrossRefGoogle Scholar
  108. Wray, G.A., 1999. Evolutionary dissociations between homologous genes and homologous structures. In: Bock, G.R., Gardew, G. (Eds.), Homology, Wiley, Chichester, pp. 189–206.Google Scholar
  109. Wright, S., 1964. Biology and the Philosophy of Science. Monist 48, 265–290.Google Scholar

Copyright information

© Elsevier GmbH 2006

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations