, Volume 3, Issue 4, pp 482–488

Imaging motor recovery after stroke



Most patients show improvement in the weeks or months after a stroke. Recovery is incomplete, however, leaving most with significant impairment and disability. Because the brain does not grow back to an appreciable extent, this recovery occurs on the basis of change in function of surviving tissues. Brain mapping studies have characterized a number of processes and principles relevant to recovery from stroke in humans. The findings have potential application to improving therapeutics that aim to restore function after stroke.

Key Words

Stroke plasticity human brain mapping recovery therapy functional MRI 


  1. 1.
    Rathore S, Hinn A, Cooper L, Tyroler H, Rosamond W. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke 2002;33: 2718–2721.CrossRefPubMedGoogle Scholar
  2. 2.
    Gresham G, Duncan P, Stason W, et al. Post-stroke rehabilitation. Rockville, MD: U.S. Department of Health and Human Services. Public Health Service, Agency for Health Care Policy and Research; 1995.Google Scholar
  3. 3.
    Nakayama H, Jorgensen H, Raaschou H, Olsen T. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 1994;75: 394–398.CrossRefPubMedGoogle Scholar
  4. 4.
    Duncan P, Lai S, Keighley J. Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology 2000;39: 835–841.CrossRefPubMedGoogle Scholar
  5. 5.
    Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Stroke. Neurologic and functional recovery: the Copenhagen Stroke Study. Phys Med Rehabil Clin N Am 1999;10: 887–906.PubMedGoogle Scholar
  6. 6.
    Binkofski F, Seitz RJ, Hacklander T, Pawelec D, Mau J, Freund HJ. Recovery of motor functions following hemiparetic stroke: a clinical and magnetic resonance-morphometric study. Cerebrovasc Dis 2001;11: 273–281.CrossRefPubMedGoogle Scholar
  7. 7.
    Hinkle JL. Variables explaining functional recovery following motor stroke. J Neurosci Nurs 2006;38: 6–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Tzvetanov P, Milanov I, Rousseff RT, Christova P. Can SSEP results predict functional recovery of stroke patients within the “therapeutic window”? Electromyogr Clin Neurophysiol 2004; 44: 43–49.PubMedGoogle Scholar
  9. 9.
    Tzvetanov P, Rousseff RT, Milanov I. Lower limb SSEP changes in stroke-predictive values regarding functional recovery. Clin Neurol Neurosurg 2003;105: 121–127.CrossRefPubMedGoogle Scholar
  10. 10.
    Kwakkel G, Kollen BJ, van der Grond J, Revo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 2003;34: 2181–2186.CrossRefPubMedGoogle Scholar
  11. 11.
    Trompetto C, Assini A, Buccolieri A, Marchese R, Abbruzzese G. Motor recovery following stroke: a transcranial magnetic stimulation study. Clin Neurophysiol 2000;111: 1860–1867.CrossRefPubMedGoogle Scholar
  12. 12.
    Feys H, Van Hees J, Bruyninckx F, Mercelis R, De Weerdt W. Value of somatosensory and motor evoked potentials in predicting arm recovery after a stroke. J Neurol Neurosurg Psychiatry 2000;68: 323–331.CrossRefPubMedGoogle Scholar
  13. 13.
    Escudero J, Sancho J, Bautista D, Escudero M, Lopez-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 1998;29: 1854–1859.CrossRefPubMedGoogle Scholar
  14. 14.
    Watanabe T, Honda Y, Fujii Y, Koyama M, Matsuzawa H, Tanaka R. Three-dimensional anisotropy contrast magnetic resonance axonography to predict the prognosis for motor function in patients suffering from stroke. J Neurosurg 2001;94: 955–960.CrossRefPubMedGoogle Scholar
  15. 15.
    Heald A, Bates D, Cartridge N, French J, Miller S. Longitudinal study of central motor conduction time following stroke: 2 Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain 1993;116: 1371–1385.CrossRefPubMedGoogle Scholar
  16. 16.
    Wenzelburger R, Kopper F, Frenzel A, et al. Hand coordination following capsular stroke. Brain 2005;128: 64–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Binkofski F, Seitz R, Arnold S, Classen J, Benecke R, Freund H. Thalamic metabolism and corticospinal tract integrity determine motor recovery in stroke. Ann Neurol 1996;39: 460–470.CrossRefPubMedGoogle Scholar
  18. 18.
    Crafton K, Mark A, Cramer S. Improved understanding of cortical injury by incorporating measures of functional anatomy. Brain 2003;126: 1650–1659.CrossRefPubMedGoogle Scholar
  19. 19.
    Pendlebury S, Blamire A, Lee M, Styles P, Matthews P. Axonal injury in the internal capsule correlates with motor impairment after stroke. Stroke 1999;30: 956–962.CrossRefPubMedGoogle Scholar
  20. 20.
    Cramer S. Functional imaging in stroke recovery. Stroke 2004; 35: 2695–2698.CrossRefPubMedGoogle Scholar
  21. 21.
    Ziemann U, Muellbacher W, Hallett M, Cohen LG. Modulation of practice-dependent plasticity in human motor cortex. Brain 2001;124: 1171–1181.CrossRefPubMedGoogle Scholar
  22. 22.
    Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol 2004;61: 1844–1848.CrossRefPubMedGoogle Scholar
  23. 23.
    Cramer S. Changes in motor system function and recovery after stroke. Restor Neurol Neurosci 2004;22: 231–238.PubMedGoogle Scholar
  24. 24.
    Carmichael ST. Plasticity of cortical projections after stroke. Neuroscientist 2003;9: 64–75.CrossRefPubMedGoogle Scholar
  25. 25.
    Rijntjes M, Weiller C. Recovery of motor and language abilities after stroke: the contribution of functional imaging. Prog Neurobiol 2002;66: 109–122.CrossRefPubMedGoogle Scholar
  26. 26.
    Hallett M. Plasticity of the human motor cortex and recovery from stroke. Brain Res Rev 2001;36: 169–174.CrossRefPubMedGoogle Scholar
  27. 27.
    Munoz-Cespedes JM, Rios-Lago M, Paul N, Maestu F. Functional neuroimaging studies of cognitive recovery after acquired brain damage in adults. Neuropsychol Rev 2005;15: 169–183.CrossRefPubMedGoogle Scholar
  28. 28.
    Baron J, Cohen L, Cramer S, et al. Neuroimaging in stroke recovery: a position paper from the First International Workshop on Neuroimaging and Stroke Recovery. Cerebrovasc Dis 2004; 18: 260–267.CrossRefPubMedGoogle Scholar
  29. 29.
    Nudo R, Plautz E, Frost S. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 2001; 24: 1000–1019.CrossRefPubMedGoogle Scholar
  30. 30.
    Dijkhuizen R, Singhal A, Mandeville J, et al. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 2003;23: 510–517.PubMedGoogle Scholar
  31. 31.
    Voorhies A, Jones T. The behavioral and dendritic growth effects of focal sensorimotor cortical damage depend on the method of lesion induction. Behav Brain Res 2002;133: 237–246.CrossRefPubMedGoogle Scholar
  32. 32.
    Biernaskie J, Corbett D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci 2001;21: 5272–5280.PubMedGoogle Scholar
  33. 33.
    Kleim J, Bruneau R, VandenBerg P, MacDonald E, Mulrooney R, Pocock D. Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol Res 2003;25: 789–793.CrossRefPubMedGoogle Scholar
  34. 34.
    Stroemer R, Kent T, Hulsebosch C. Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with d-amphetamine therapy after neocortical infarction in rats. Stroke 1998;29: 2381–2393; discussion 2393–2395.CrossRefPubMedGoogle Scholar
  35. 35.
    Kawamata T, Dietrich W, Schallert T, et al. Intracisternal basic fibroblast growth factor (bFGF) enhances functional recovery and upregulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci 1997;94: 8179–8184.CrossRefPubMedGoogle Scholar
  36. 36.
    Cramer S, Chopp M. Recovery recapitulates ontogeny. Trends Neurosci 2000;23: 265–271.CrossRefPubMedGoogle Scholar
  37. 37.
    Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res 2003;28: 1757–1769.CrossRefPubMedGoogle Scholar
  38. 38.
    Kawamata T, Alexis N, Dietrich W, Finklestein S. Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J Cereb Blood Flow Metab 1996;16: 542–547.CrossRefPubMedGoogle Scholar
  39. 39.
    Ren J, Kaplan P, Charette M, Speller H, Finklestein S. Time window of intracisternal osteogenic protein-1 in enhancing functional recovery after stroke. Neuropharmacology 2000;39: 860–865.CrossRefPubMedGoogle Scholar
  40. 40.
    Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 2003; 73: 778–786.CrossRefPubMedGoogle Scholar
  41. 41.
    Mahmood A, Lu D, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 2004;21: 33–39.CrossRefPubMedGoogle Scholar
  42. 42.
    Plautz E, Barbay S, Frost S, et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res 2003;25: 801–810.CrossRefPubMedGoogle Scholar
  43. 43.
    Johansson B, Belichenko P. Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and post-ischemic rat brain. J Cereb Blood Flow Metab 2002;22: 89–96.CrossRefPubMedGoogle Scholar
  44. 44.
    Jones T, Chu C, Grande L, Gregory A. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 1999;19: 10153–10163.PubMedGoogle Scholar
  45. 45.
    Cramer S. Clinical issues in animal models of stroke and rehabilitation. ILAR J 2003;44: 83–84.PubMedGoogle Scholar
  46. 46.
    Kertesz A. What do we learn from recovery from aphasia? Adv Neurol 1988;47: 277–292.PubMedGoogle Scholar
  47. 47.
    Rossini P, Dal Forno G. Integrated technology for evaluation of brain function and neural plasticity. Phys Med Rehabil Clin N Am 2004;15: 263–306.CrossRefPubMedGoogle Scholar
  48. 48.
    Li Y, Jiang N, Powers C, Chopp M. Neuronal damage and plasticity identified by map-2, gap-43 and cyclin d1 immunoreactivity after focal cerebral ischemia in rat. Stroke 1998;29: 1972–1981.CrossRefPubMedGoogle Scholar
  49. 49.
    Speliotes E, Caday C, Do T, Weise J, Kowall N, Finklestein S. Increased expression of basic fibroblast growth factor (bFGF) following focal cerebral infarction in the rat. Brain Res Mol Brain Res 1996;39: 31–42.CrossRefPubMedGoogle Scholar
  50. 50.
    Witte O, Bidmon H, Schiene K, Redecker C, Hagemann G. Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J Cereb Blood Flow Metab 2000;20: 1149–1165.CrossRefPubMedGoogle Scholar
  51. 51.
    Eysel U. Perilesional cortical dysfunction and reorganization. Adv Neurol 1997;73: 195–206.PubMedGoogle Scholar
  52. 52.
    Nudo R, Wise B, SiFuentes F, Milliken G. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996;272: 1791–1794.CrossRefPubMedGoogle Scholar
  53. 53.
    Xerri C, Merzenich M, Peterson B, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol 1998;79: 2119–2148.PubMedGoogle Scholar
  54. 54.
    Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol 2005; 193: 291–311.CrossRefPubMedGoogle Scholar
  55. 55.
    Furlan M, Marchal G, Viader F, Derlon J, Baron J. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 1996;40: 216–226.CrossRefPubMedGoogle Scholar
  56. 56.
    Heiss W, Grond M, Thiel A, et al. Tissue at risk of infarction rescued by early reperfusion: a positron emission tomography study in systemic recombinant tissue plasminogen activator thrombolysis of acute stroke. J Cereb Blood Flow Metab 1998;18: 1298–1307.CrossRefPubMedGoogle Scholar
  57. 57.
    Cramer S, Nelles G, Benson R, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997; 28: 2518–2527.CrossRefPubMedGoogle Scholar
  58. 58.
    Cramer S, Moore C, Finklestein S, Rosen B. A pilot study of somatotopic mapping after cortical infarct. Stroke 2000; 31: 668–671.CrossRefPubMedGoogle Scholar
  59. 59.
    Rosen H, Petersen S, Linenweber M, et al. Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology 2000;55: 1883–1894.CrossRefPubMedGoogle Scholar
  60. 60.
    Binkofski F, Seitz R. Modulation of the bold-response in early recovery from sensorimotor stroke. Neurology 2004;63: 1223–1229.CrossRefPubMedGoogle Scholar
  61. 61.
    Luft A, Waller S, Forrester L. Lesion location alters brain activation in chronically impaired stroke survivors. Neuroimage 2004;21: 924–935.CrossRefPubMedGoogle Scholar
  62. 62.
    Warburton E, Price C, Swinburn K, Wise R. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry 1999;66: 155–161.CrossRefPubMedGoogle Scholar
  63. 63.
    Cramer SC, Shah R, Juranek J, Crafton KR, Le V. Activity in the peri-infarct rim in relation to recovery from stroke. Stroke 2006; 37: 111–115.CrossRefPubMedGoogle Scholar
  64. 64.
    Butz M, Gross J, Timmermann L, et al. Perilesional pathological oscillatory activity in the magnetoencephalogram of patients with cortical brain lesions. Neurosci Lett 2004;355: 93–96.CrossRefPubMedGoogle Scholar
  65. 65.
    Hensel S, Rockstroh B, Berg P, Elbert T, Schonle P. Left-hemispheric abnormal EEG activity in relation to impairment and recovery in aphasic patients. Psychophysiology 2004;41: 394–400.CrossRefPubMedGoogle Scholar
  66. 66.
    Demougeot C, Walker P, Beley A, et al. Spectroscopic data following stroke reveal tissue abnormality beyond the region of T2-weighted hyperintensity. J Neurol Sci 2002;199: 73–78.CrossRefPubMedGoogle Scholar
  67. 67.
    Heiss WD, Huber M, Fink GR, et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 1992;12: 193–203.CrossRefPubMedGoogle Scholar
  68. 68.
    von Monakow C. Diaschisis. In: Pribram K, ed. Brain and behavior. 1 Mood, states and mind. Baltimore: Penguin Books; 1986;17: 817–830.Google Scholar
  69. 69.
    Feeney D, Baron J. Diaschisis. Stroke 1986;17: 817–830.CrossRefPubMedGoogle Scholar
  70. 70.
    Carmichael ST, Tatsukawa K, Katsman D, Tsuyuguchi N, Kornblum HI. Evolution of diaschisis in a focal stroke model. Stroke 2004;35: 758–763.CrossRefPubMedGoogle Scholar
  71. 71.
    Nhan H, Barquist K, Bell K, Esselman P, Odderson I, Cramer S. Brain function early after stroke in relation to subsequent recovery. J Cereb Blood Flow Metab 2004;24: 756–763.CrossRefPubMedGoogle Scholar
  72. 72.
    Seitz R, Azari N, Knorr U, Binkofski F, Herzog H, Freund H. The role of diaschisis in stroke recovery. Stroke 1999;30: 1844–1850.CrossRefPubMedGoogle Scholar
  73. 73.
    Brion J-P, Demeurisse G, Capon A. Evidence of cortical reorganization in hemiparetic patients. Stroke 1989;20: 1079–1084.CrossRefPubMedGoogle Scholar
  74. 74.
    Chollet F, DiPiero V, Wise R, Brooks D, Dolan R, Frackowiak R. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 1991; 29: 63–71.CrossRefPubMedGoogle Scholar
  75. 75.
    Weiller C, Ramsay S, Wise R, Friston K, Frackowiak R. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 1993;33: 181–189.CrossRefPubMedGoogle Scholar
  76. 76.
    Seitz R, Hoflich P, Binkofski F, Tellmann L, Herzog H, Freund H-J. Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 1998;55: 1081–1088.CrossRefPubMedGoogle Scholar
  77. 77.
    Cao Y, D’Olhaberriague L, Vikingstad E, Levine S, Welch K. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 1998;29: 112–122.CrossRefPubMedGoogle Scholar
  78. 78.
    Calautti C, Leroy F, Guincestre J, Marie R, Baron J. Sequential activation brain mapping after subcortical stroke: changes in hemispheric balance and recovery. Neuroreport 2001;12: 3883–3886.CrossRefPubMedGoogle Scholar
  79. 79.
    Tombari D, Loubinoux I, Pariente J, et al. A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. Neuroimage 2004;23: 827–839.CrossRefPubMedGoogle Scholar
  80. 80.
    Weiller C, Isensee C, Rijntjes M, et al. Recovery from Wernicke’s aphasia: a position emission tomographic study. Ann Neurol 1995;37: 723–732.CrossRefPubMedGoogle Scholar
  81. 81.
    Thulborn K, Carpenter P, Just M. Plasticity of language-related brain function during recovery from stroke. Stroke 1999;30: 749–754.CrossRefPubMedGoogle Scholar
  82. 82.
    Heiss W, Kessler J, Thiel A, Ghaemi M, Karbe H. Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol 1999;45: 430–438.CrossRefPubMedGoogle Scholar
  83. 83.
    Cao Y, Vikingstad E, George K, Johnson A, Welch K. Cortical language activation in stroke patients recovering from aphasia with functional MRI. Stroke 1999;30: 2331–2340.CrossRefPubMedGoogle Scholar
  84. 84.
    Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 1990;28: 597–613.CrossRefPubMedGoogle Scholar
  85. 85.
    Ward N, Brown M, Thompson A, Frackowiak R. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 2003;126: 1430–1448.CrossRefPubMedGoogle Scholar
  86. 86.
    Cramer SC, Crafton KR. Somatotopy and movement representation sites following cortical stroke. Exp Brain Res 2006;168: 25–32.CrossRefPubMedGoogle Scholar
  87. 87.
    Fujii Y, Nakada T. Cortical reorganization in patients with sub-cortical hemiparesis: neural mechanisms of functional recovery and prognostic implication. J Neurosurg 2003;98: 64–73.CrossRefPubMedGoogle Scholar
  88. 88.
    Small S, Hlustik P, Noll D, Genovese C, Solodkin A. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain 2002;125: 1544–1557.CrossRefPubMedGoogle Scholar
  89. 89.
    Saur D, Lange R, Baumgaertner A, et al. Dynamics of language reorganization after stroke. Brain 2006;129: 1371–1384.CrossRefPubMedGoogle Scholar
  90. 90.
    Marshall R, Perera G, Lazar R, Krakauer J, Constantine R, DeLaPaz R. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 2000;31: 656–661.CrossRefPubMedGoogle Scholar
  91. 91.
    Shimizu T, Hosaki A, Hino T, et al. Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 2002;125: 1896–1907.CrossRefPubMedGoogle Scholar
  92. 92.
    Manganotti P, Patuzzo S, Cortese F, Palermo A, Smania N, Fiaschi A. Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke. Clin Neurophysiol 2002;113: 936–943.CrossRefPubMedGoogle Scholar
  93. 93.
    Liepert J, Hamzei F, Weiller C. Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve 2000;23: 1761–1763.CrossRefPubMedGoogle Scholar
  94. 94.
    Butefisch C, Netz J, Wessling M, Seitz R, Homberg V. Remote changes in cortical excitability after stroke. Brain 2003;126: 470–481.CrossRefPubMedGoogle Scholar
  95. 95.
    Murase N, Duque J, Mazzocchio R, Cohen L. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 2004;55: 400–409.CrossRefPubMedGoogle Scholar
  96. 96.
    Winhuisen L, Thiel A, Schumacher B, et al. Role of the contralateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke 2005;36: 1759–1763.CrossRefPubMedGoogle Scholar
  97. 97.
    Johansen-Berg H, Rushworth M, Bogdanovic M, Kischka U, Wimalaratna S, Matthews P. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 2002;99: 14518–14523.CrossRefPubMedGoogle Scholar
  98. 98.
    Musso M, Weiller C, Kiebel S, Muller SP, Bulau P, Rijntjes M. Training-induced brain plasticity in aphasia. Brain 1999;122: 1781–1790.CrossRefPubMedGoogle Scholar
  99. 99.
    Zemke A, Heagerty P, Lee C, Cramer S. Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 2003;34: E23-E28.CrossRefPubMedGoogle Scholar
  100. 100.
    Traversa R, Cicinelli P, Bassi A, Rossini P, Bernardi G. Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses. Stroke 1997;28: 110–117.CrossRefPubMedGoogle Scholar
  101. 101.
    Pennisi G, Alagona G, Rapisarda G, et al. Transcranial magnetic stimulation after pure motor stroke. Clin Neurophysiol 2002;113: 1536–1543.CrossRefPubMedGoogle Scholar
  102. 102.
    Thickbroom GW, Byrnes ML, Archer SA, Mastaglia FL. Motor outcome after subcortical stroke correlates with the degree of cortical reorganization. Clin Neurophysiol 2004;115: 2144–2150.CrossRefPubMedGoogle Scholar
  103. 103.
    Heiss WD, Thiel A. A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang 2006;98: 118–123.CrossRefPubMedGoogle Scholar
  104. 104.
    Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005;57: 874–882.CrossRefPubMedGoogle Scholar
  105. 105.
    Scheidtmann K, Fries W, Muller F, Koenig E. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomized, double-blind study. Lancet 2001;358: 787–790.CrossRefPubMedGoogle Scholar
  106. 106.
    Walker-Batson D, Smith P, Curtis S, Unwin H, Greenlee R. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 1995;26: 2254–2259.CrossRefPubMedGoogle Scholar
  107. 107.
    Dam M, Tonin P, De Boni A, et al. Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy. Stroke 1996;27: 1211–1214.CrossRefPubMedGoogle Scholar
  108. 108.
    Khedr EM, Ahmed MA, Fathy N, Rothwell JC. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 2005;65: 466–468.CrossRefPubMedGoogle Scholar
  109. 109.
    Brown JA, Lutsep HL, Weinand M, Cramer SC. Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 2006;58: 464–473.CrossRefPubMedGoogle Scholar
  110. 110.
    Lindberg P, Schmitz C, Forssberg H, Engardt M, Borg J. Effects of passive-active movement training on upper limb motor function and cortical activation in chronic patients with stroke: a pilot study. J Rehabil Med 2004;36: 117–123.CrossRefPubMedGoogle Scholar
  111. 111.
    Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey LL, Lojovich JM, Carey JR. Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp Brain Res 2004;154: 450–460.CrossRefPubMedGoogle Scholar
  112. 112.
    Luft A, McCombe-Waller S, Whitall J, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 2004;292: 1853–1861.CrossRefPubMedGoogle Scholar
  113. 113.
    Pariente J, Loubinoux I, Carel C, et al. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol 2001;50: 718–729.CrossRefPubMedGoogle Scholar
  114. 114.
    Schaechter J, Kraft E, Hilliard T, et al. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair 2002;16: 326–338.CrossRefPubMedGoogle Scholar
  115. 115.
    Leger A, Demonet JF, Ruff S, et al. Neural substrates of spoken language rehabilitation in an aphasic patient: an fMRI study. Neuroimage 2002;17: 174–183.CrossRefPubMedGoogle Scholar
  116. 116.
    Carey J, Kimberley T, Lewis S, et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 2002;125: 773–788.CrossRefPubMedGoogle Scholar
  117. 117.
    Johansen-Berg H, Dawes H, Guy C, Smith S, Wade D, Matthews P. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 2002;125: 2731–2742.CrossRefPubMedGoogle Scholar
  118. 118.
    You SH, Jang SH, Kim YH, et al. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke 2005;36: 1166–1171.CrossRefPubMedGoogle Scholar
  119. 119.
    Liepert J, Hamzei F, Weiller C. Lesion-induced and training-induced brain reorganization. Restor Neurol Neurosci 2004;22: 269–277.PubMedGoogle Scholar
  120. 120.
    Cramer S, Benson R, Himes D, et al. Use of functional MRI to guide decisions in a clinical stroke trial. Stroke 2005;36: E50-E52.CrossRefPubMedGoogle Scholar
  121. 121.
    Platz T, Kim I, Engel U, Kieselbach A, Mauritz K. Brain activation pattern as assessed with multi-modal EEG analysis predict motor recovery among stroke patients with mild arm paresis who receive the arm ability training. Restor Neurol Neurosci 2002;20: 21–35.PubMedGoogle Scholar
  122. 122.
    Dong Y, Dobkin BH, Cen SY, Wu AD, Winstein CJ. Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke. Stroke 2006;37: 1552–1555.CrossRefPubMedGoogle Scholar
  123. 123.
    Fritz SL, Light KE, Patterson TS, Behrman AL, Davis SB. Active finger extension predicts outcomes after constraint-induced movement therapy for individuals with hemiparesis after stroke. Stroke 2005;36: 1172–1177.CrossRefPubMedGoogle Scholar
  124. 124.
    Koski L, Mernar T, Dobkin B. Immediate and long-term changes in corticomotor output in response to rehabilitation: correlation with functional improvements in chronic stroke. Neurorehabil Neural Repair 2004;18: 230–249.CrossRefPubMedGoogle Scholar
  125. 125.
    Cramer S. Functional magnetic resonance imaging in stroke recovery. Phys Med Rehabil Clin N Am 2003;14: S47-S55.CrossRefPubMedGoogle Scholar
  126. 126.
    Kopp B, Kunkel A, Muhlnickel W, Villringer K, Taub E, Flor H. Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport 1999; 10: 807–810.CrossRefPubMedGoogle Scholar
  127. 127.
    Liepert J, Miltner W, Bauder H, et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett 1998;250: 5–8.CrossRefPubMedGoogle Scholar
  128. 128.
    Park SW, Butler AJ, Cavalheiro V, Alberts JL, Wolf SL. Changes in serial optical topography and TMS during task performance after constraint-induced movement therapy in stroke: a case study. Neurorehabil Neural Repair 2004;18: 95–105.CrossRefPubMedGoogle Scholar
  129. 129.
    Wittenberg G, Chen R, Ishii K, et al. Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair 2003;17: 48–57.CrossRefPubMedGoogle Scholar
  130. 130.
    Wolf S, Lecraw D, Barton L, Jann, BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 1989;104: 125–132.CrossRefPubMedGoogle Scholar
  131. 131.
    Taub E, Miller N, Novack TA, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 1993; 74: 347–354.PubMedGoogle Scholar
  132. 132.
    Blanton S, Wolf S. An application of upper-extremity constraint-induced movement therapy in a patient with subacute stroke. Phys Ther 1999;79: 847–853.PubMedGoogle Scholar
  133. 133.
    Dromerick A, Edwards D, Hahn M. Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? Stroke 2000;31: 2984–2988.CrossRefPubMedGoogle Scholar
  134. 134.
    Liepert J. Motor cortex excitability in stroke before and after constraint-induced movement therapy. Cogn Behav Neurol 2006; 19: 41–47.CrossRefPubMedGoogle Scholar
  135. 135.
    Conforto AB, Kaelin-Lang A, Cohen LG. Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol 2002;51: 122–125.CrossRefPubMedGoogle Scholar
  136. 136.
    Muellbacher W, Richards C, Ziemann U, et al. Improving hand function in chronic stroke. Arch Neurol 2002;59: 1278–1282.CrossRefPubMedGoogle Scholar
  137. 137.
    Bornschlegl M, Asanuma H. Importance of the projection from the sensory to the motor cortex for recovery of motor function following partial thalamic lesion in the monkey. Brain Res 1987; 437: 121–130.CrossRefPubMedGoogle Scholar
  138. 138.
    Pavlides C, Miyashita E, Asanuma H. Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J Neurophysiol 1993;70: 733–741.PubMedGoogle Scholar
  139. 139.
    Reinkensmeyer D, Emken J, Cramer S. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng 2004;6: 497–525.CrossRefPubMedGoogle Scholar
  140. 140.
    Huttunen J, Wikstrom H, Korvenoja A, Seppalainen A, Aronen H, Ilmoniemi R. Significance of the second somatosensory cortex in sensorimotor integration: enhancement of sensory responses during finger movements. Neuroreport 1996;7: 1009–1012.CrossRefPubMedGoogle Scholar
  141. 141.
    Thickbroom G, Byrnes M, Archer S, Nagarajan L, Mastaglia F. Differences in sensory and motor cortical organization following brain injury early in life. Ann Neurol 2001;49: 320–327.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2006

Authors and Affiliations

  1. 1.Departments of Neurology and Anatomy and NeurobiologyUniversity of CaliforniaIrvine
  2. 2.School of Physical Therapy and RehabilitationDokuz Eylul UniversityIzmirTurkey
  3. 3.UCI Medical CenterOrange

Personalised recommendations