NeuroRX

, Volume 3, Issue 3, pp 358–372 | Cite as

The application of NMR-based metabonomics in neurological disorders

Article

Summary

Advances in postgenomic technologies have radically changed the information output from complex biological systems, generating vast amounts of high complexity data that can be interpreted by means of chemometric and bioinformatic methods to achieve disease diagnosis and prognosis. High-resolution nuclear magnetic resonance (NMR) spectroscopy of biofluids such as plasma, cerebrospinal fluid (CSF), and urine can generate robust, interpretable metabolic fingerprints that contain latent information relating to physiological or pathological status. This technology has been successfully applied to both preclinical and clinical studies of neurodegenerative diseases such as Huntington’s disease, muscular dystrophy, and cerebellar ataxia. An extension of this technology,1H magicangle-spinning (HRMAS) NMR spectroscopy, can be used to generate metabolic information on small intact tissue samples, providing a metabolic link between metabolic profiling of biofluids and histology. In this review we provide a summary of high-resolution NMR studies in neurodegenerative disease and explore the potential of metabonomics in evaluating disease progression with respect to therapeutic intervention.

Key Words

Metabonomics NMR spectroscopy neurodegeneration chemometric biomarker 

References

  1. 1.
    Griffin JL, Sang E, Evens T, Davies K, Clarke K. Metabolic profiles of dystrophin and utrophin expression in mouse models of Duchenne muscular dystrophy.FEBS Lett 530: 109–116, 2002.PubMedGoogle Scholar
  2. 2.
    Clish CB, Davidov E, Oresic M, Plasterer TN, Lavine G, Londo T, et al. Integrative biological analysis of the APOE*3-leiden transgenic mouse.Omics 8: 3–13, 2004.PubMedGoogle Scholar
  3. 3.
    Hwang D, Smith JJ, Leslie DM, Weston AD, Rust AG, Ramsey S, et al. A data integration methodology for systems biology: experimental verification.Proc Natl Acad Sci USA 102: 17302–17307, 2005.PubMedGoogle Scholar
  4. 4.
    Miller RM, Federoff HJ. Microarrays in Parkinson’s disease: a systematic approach.NeuroRx 3: 318–325, 2006.Google Scholar
  5. 5.
    Olson NE. The microarray data analysis process: from raw to biological significance.NeuroRx 3: 371–381, 2006.Google Scholar
  6. 6.
    Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data.Xenobiotica 29: 1181–1189, 1999.PubMedGoogle Scholar
  7. 7.
    Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function.Nat Rev Drug Discov 1: 153–161, 2002.PubMedGoogle Scholar
  8. 8.
    Fiehn O. Metabolomics: the link between genotypes and phenotypes.Plant Mol Biol 48: 155–171, 2002.PubMedGoogle Scholar
  9. 9.
    Yang J, Xu G, Zheng Y, Kong H, Pang T, Lv S, et al. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases.J Chromatogr B Analyt Technol Biomed Life Sci 813: 59–65, 2004.PubMedGoogle Scholar
  10. 10.
    Odunsi K, Wollman RM, Ambrosone CB, Hutson A, McCann SE, Tammela J, et al. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics.Int J Cancer 113: 782–788, 2005.PubMedGoogle Scholar
  11. 11.
    Griffiths JR, Stubbs M. Opportunities for studying cancer by metabolomics: preliminary observations on tumors deficient in hypoxia-inducible factor 1.Adv Enzyme Regul 43: 67–76, 2003.PubMedGoogle Scholar
  12. 12.
    Yang J, Xu G, Hong Q, Liebich HM, Lutz K, Schmulling RM, et al. Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles.J Chromatogr B Analyt Technol Biomed Life Sci 813: 53–58, 2004.PubMedGoogle Scholar
  13. 13.
    Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics.Nat Med 8: 1439–1444, 2002.PubMedGoogle Scholar
  14. 14.
    Sabatine MS, Liu E, Morrow DA, Heller E, McCarroll R, Wiegand R, et al. Metabolomic identification of novel biomarkers of myocardial ischemia.Circulation 112: 3868–3875, 2005.PubMedGoogle Scholar
  15. 15.
    Griffin JL, Cemal CK, Pook MA. Defining a metabolic phenotype in the brain of a transgenic mouse model of spinocerebellar ataxia 3.Physiol Genomics 16: 334–340, 2004.PubMedGoogle Scholar
  16. 16.
    Dunckley T, Coon KD, Stephan DA. Discovery and development of biomarkers of neurological disease.Drug Discov Today 10: 326–334, 2005.PubMedGoogle Scholar
  17. 17.
    Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress.Mol Psychiatry 9: 684–697, 2004.PubMedGoogle Scholar
  18. 18.
    Barshop BA. Metabolomic approaches to mitochondrial disease: correlation of urine organic acids.Mitochondrion 4: 521–527, 2004.PubMedGoogle Scholar
  19. 19.
    Coen M, O’Sullivan M, Bubb WA, Kuchel PW, Sorrell T. Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis.Clin Infect Dis 41: 1582–1590, 2005.PubMedGoogle Scholar
  20. 20.
    Braun KP, Gooskens RH, Vandertop WP, Tulleken CA, van der Grond J. 1H magnetic resonance spectroscopy in human hydro-cephalus.J Magn Reson Imaging 17: 291–299, 2003.PubMedGoogle Scholar
  21. 21.
    Wang Y, Holmes E, Nicholson JK, Cloarec O, Chollet J, Tanner M, et al. Metabonomic investigations in mice infected withSchistosoma mansoni: an approach for biomarker identification.Proc Natl Acad Sci USA 101: 12676–12681, 2004.PubMedGoogle Scholar
  22. 22.
    Rudkin TM, Arnold DL. Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders.Arch Neurol 56: 919–926, 1999.PubMedGoogle Scholar
  23. 23.
    Kapeller P, McLean MA, Griffin CM, Chard D, Parker GJ, Barker GJ, et al. Preliminary evidence for neuronal damage in cortical grey matter and normal appearing white matter in short duration relapsing-remitting multiple sclerosis: a quantitative MR spectroscopic imaging study.J Neurol 248: 131–138, 2001.PubMedGoogle Scholar
  24. 24.
    Karrenbauer VD, Leoni V, Lim ET, Giovannoni G, Ingle GT, Sastre-Garriga J, et al. Plasma cerebrosterol and magnetic resonance imaging measures in multiple sclerosis.Clin Neurol Neurosurg 108: 456–460, 2006.PubMedGoogle Scholar
  25. 25.
    Tartaglia MC, Arnold DL. The role of MRS and fMRI in multiple sclerosis.Adv Neurol 98: 185–202, 2006.PubMedGoogle Scholar
  26. 26.
    Frisoni GB, Filippi M. Multiple sclerosis and Alzheimer’s disease through the looking glass of MR imaging.AJNR Am J Neuroradiol 26: 2488–2491, 2005.PubMedGoogle Scholar
  27. 27.
    Kleiner-Fisman G, Bergeron C, Lang AE. Presentation of Creutzfeldt—Jakob disease as acute corticobasal degeneration syndrome.Mov Disord 19: 948–949, 2004.PubMedGoogle Scholar
  28. 28.
    Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy.Neurology 43: 2689–2695, 1993.PubMedGoogle Scholar
  29. 29.
    Brouwer OF, Laboyrie PM, Peters AC, Vielvoye GJ. Follow-up magnetic resonance imaging in Hallervorden-Spatz disease.Clin Neurol Neurosurg 94: S57-S60, 1992.PubMedGoogle Scholar
  30. 30.
    Kang PB, Hunter JV, Kaye EM. Lactic acid elevation in extra-mitochondrial childhood neurodegenerative diseases.J Child Neurol 16: 657–660, 2001.PubMedGoogle Scholar
  31. 31.
    Khiat A, Bard C, Lacroix A, Rousseau J, Boulanger Y. Brain metabolic alterations in Cushing’s syndrome as monitored by proton magnetic resonance spectroscopy.NMR Biomed 12: 357–363, 1999.PubMedGoogle Scholar
  32. 32.
    Khiat A, Yared Z, Bard C, Lacroix A, Boulanger Y. Long-term brain metabolic alterations in exogenous Cushing’s syndrome as monitored by proton magnetic resonance spectroscopy.Brain Res 911: 134–140, 2001.PubMedGoogle Scholar
  33. 33.
    Gallelli KA, Wagner CM, Karchemskiy A, Howe M, Spielman D, Reiss A, et al. N-acetylaspartate levels in bipolar offspring with and at high-risk for bipolar disorder.Bipolar Disord 7: 589–597, 2005.PubMedGoogle Scholar
  34. 34.
    Choi IY, Lee SP, Guilfoyle DN, Helpern JA. In vivo NMR studies of neurodegenerative diseases in transgenic and rodent models.Neurochem Res 28: 987–1001, 2003.PubMedGoogle Scholar
  35. 35.
    Li LM, Caramanos Z, Cendes F, Andermann F, Antel SB, Dubeau F, et al. Lateralization of temporal lobe epilepsy (TLE) and discrimination of TLE from extra-TLE using pattern analysis of magnetic resonance spectroscopic and volumetric data.Epilepsia 41: 832–842, 2000.PubMedGoogle Scholar
  36. 36.
    Kalra S, Arnold DL, Cashman NR. Biological markers in the diagnosis and treatment of ALS.J Neurol Sci 165: S27-S32. 1999.PubMedGoogle Scholar
  37. 37.
    Matthews PM, Pioro E, Narayanan S, De Stefano N, Fu L, Francis G, et al. Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy.Brain 119: 715–722, 1996.PubMedGoogle Scholar
  38. 38.
    Seppi K, Schocke MF. An update on conventional and advanced magnetic resonance imaging techniques in the differential diagnosis of neurodegenerative parkinsonism.Curr Opin Neurol 18: 370–375, 2005.PubMedGoogle Scholar
  39. 39.
    Kasparova S, Sumbalova Z, Bystricky P, Kucharska J, Liptaj T, Mlynarik V, et al. Effect of coenzyme Q10 and vitamin E on brain energy metabolism in the animal model of Huntington’s disease.Neurochem Int 48: 93–99, 2006.PubMedGoogle Scholar
  40. 40.
    Fernandez A, Garcia-Segura JM, Ortiz T, Montoya J, Maestu F, Gil-Gregorio P, et al. Proton magnetic resonance spectroscopy and magnetoencephalographic estimation of delta dipole density: a combination of techniques that may contribute to the diagnosis of Alzheimer’s disease.Dement Geriatr Cogn Disord 20: 169–177, 2005.PubMedGoogle Scholar
  41. 41.
    Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO. In vivo brain concentrations of N-acetyl compounds, creatine, and choline in Alzheimer’s disease.Arch Gen Psychiatry 56: 185–192, 1999.PubMedGoogle Scholar
  42. 42.
    Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy.Nat Med 2: 323–325, 1996.PubMedGoogle Scholar
  43. 43.
    Brown FF, Campbell ID, Kuchel PW, Rabenstein DC. Human erythrocyte metabolism studies by 1H spin echo NMR.FEBS Lett 82: 12–16, 1977.PubMedGoogle Scholar
  44. 44.
    Ohsaka A, Yoshikawa K, Matuhasi T. Detection by proton nuclear magnetic resonance of elevated lactate concentration in serums from patients with malignant tumors.Jpn J Med Sci Biol 32: 305–309, 1979.PubMedGoogle Scholar
  45. 45.
    Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ. Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine.Clin Chem 30: 426–432, 1984.PubMedGoogle Scholar
  46. 46.
    Nicholson JK, Buckingham MJ, Sadler PJ. High resolution 1H n.m.r. studies of vertebrate blood and plasma.Biochem J 211: 605–615, 1983.PubMedGoogle Scholar
  47. 47.
    Nicholson JK, Timbrell JA, Sadler PJ. Proton NMR spectra of urine as indicators of renal damage: mercury-induced nephrotoxicity in rats.Mol Pharmacol 27: 644–651, 1985.PubMedGoogle Scholar
  48. 48.
    Cheng LL, Newell K, Mallory AE, Hyman BT, Gonzalez RG. Quantification of neurons in Alzheimer and control brains with ex vivo high resolution magic angle spinning proton magnetic resonance spectroscopy and stereology.Magn Reson Imaging 20: 527–533, 2002.PubMedGoogle Scholar
  49. 49.
    Cheng LL, Chang IW, Louis DN, Gonzalez RG. Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens.Cancer Res 58: 1825–1832, 1998.PubMedGoogle Scholar
  50. 50.
    Cheng LL, Ma MJ, Becerra L, Ptak T, Tracey I, Lackner A, et al. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy.Proc Natl Acad Sci USA 94: 6408–6413, 1997.PubMedGoogle Scholar
  51. 51.
    Barton SJ, Howe FA, Tomlins AM, Cudlip SA, Nicholson JK, Bell BA, et al. Comparison of in vivo 1H MRS of human brain tumours with 1H HR-MAS spectroscopy of intact biopsy samplesin vitro.Magma 8: 121–128, 1999.PubMedGoogle Scholar
  52. 52.
    Fu R, Brey WW, Shetty K, Gor’kov P, Saha S, Long JR, et al. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory.J Magn Reson 177: 1–8, 2005.PubMedGoogle Scholar
  53. 53.
    Sidelmann UG, Braumann U, Hoffmann M, Spraul M, Lindon JC, Nicholson JK, et al. Directly coupled 800 MHz HPLC-NMR spectroscopy of urine and its applications to the identification of the major phase II metabolites of tolfenamic acid.Anal Chem 69: 607–612, 1997.Google Scholar
  54. 54.
    Martin GE, Hadden CE, Russell DJ, Kaluzny BD, Guido JE, Duholke WK, et al. Identification of degradants of a complex alkaloid using NMR cryoprobe technology and ACD/structure elucidator.J Heterocyclic Chem 39: 1241–1250, 2002.Google Scholar
  55. 55.
    Griffin JL, Lehtimaki KK, Valonen PK, Grohn OH, Kettunen MI, Yla-Herttuala S, et al. Assignment of (1)H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death.Cancer Res 63: 3195–3201, 2003.PubMedGoogle Scholar
  56. 56.
    Hinse C, Richter C, Provenzani A, Stockigt J.In vivo monitoring of alkaloid metabolism in hybrid plant cell cultures by 2D cryo-NMR without labeling.Bioorg Med Chem 11: 3913–3919, 2003.PubMedGoogle Scholar
  57. 57.
    Beckwith-Hall BM, Nicholson JK, Nicholls AW, Foxall PJ, Lindon JC, Connor SC, et al. Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins.Chem Res Toxicol 11: 260–272, 1998.PubMedGoogle Scholar
  58. 58.
    Nicholson JK, Foxall PJ, Spraul M, Fanant RD, Lindon JC. 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma.Anal Chem 67: 793–811, 1995.PubMedGoogle Scholar
  59. 59.
    Sathasivam K, Baxendale S, Mangiarini L, Bertaux F, Hetherington C, Kanazawa I, et al. Aberrant processing of the Fugu HD (FrHD) mRNA in mouse cells and in transgenic mice.Hum Mol Genet 6: 2141–2149, 1997.PubMedGoogle Scholar
  60. 60.
    Van Zijl PCM, O’Neil Johnson M, Mori S, Hurd RE. Magic-angle-gradient double-quantum-filtered COSY.J Magn Reson 113A: 265–270, 1995.Google Scholar
  61. 61.
    Shockcor JP, Unger SE, Wilson ID, Foxall PJ, Nicholson JK, Lindon JC. Combined HPLC, NMR spectroscopy, and ion-trap mass spectrometry with application to the detection and characterization of xenobiotic and endogenous metabolites in human urine.Anal Chem 68: 4431–4435, 1996.PubMedGoogle Scholar
  62. 62.
    Lindon JC, Nicholson JK, Holmes E, Keun HC, Craig A, Pearce JT, et al. Summary recommendations for standardization and reporting of metabolic analyses.Nat Biotechnol 23: 833–838. 2005.PubMedGoogle Scholar
  63. 63.
    Garrod S, Humpher E, Connor SC, Connelly JC, Spraul M, Nicholson JK, et al. High-resolution (1)H NMR and magic angle spinning NMR spectroscopic investigation of the biochemical effects of 2-bromoethanamine in intact renal and hepatic tissue.Magn Reson Med 45: 781–790, 2001.PubMedGoogle Scholar
  64. 64.
    Moka D, Vorreuther R, Schicha H, Spraul M, Humpfer E, Lipinski M, et al. Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy.J Pharm Biomed Anal 17: 125–132, 1998.PubMedGoogle Scholar
  65. 65.
    Tomlins AM, Foxall PJ, Lynch MJ, Parkinson J, Everett JR, Nicholson JK. High resolution 1H NMR spectroscopic studies on dynamic biochemical processes in incubated human seminal fluid samples.Biochim Biophys Acta 1379: 367–380, 1998.PubMedGoogle Scholar
  66. 66.
    Tate AR, Foxall PJ, Holmes E, Moka D, Spraul M, Nicholson JK, et al. Distinction between normal and renal cell carcinoma kidney cortical biopsy samples using pattern recognition of (1)H magic angle spinning (MAS) NMR spectra.NMR Biomed 13: 64–71, 2000.PubMedGoogle Scholar
  67. 67.
    Eriksson L, Antti H, Gottfries J, Holmes E, Johansson E, Lindgren F, et al. Using chemometrics for navigating in the large data sets of genomics, proteomics, and metabonomics (gpm).Anal Bioanal Chem 380: 419–429, 2004.PubMedGoogle Scholar
  68. 68.
    Trygg J, Wold S. O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter.J Chemometrics 17: 53–64, 2003.Google Scholar
  69. 69.
    Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP, Davies SW. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease.Proc Natl Acad Sci USA 97: 8093–8097, 2000.PubMedGoogle Scholar
  70. 70.
    Huang Y, Lisboa PJ, El-Deredy W. Tumour grading from magnetic resonance spectroscopy: a comparison of feature extraction with variable selection.Stat Med 22(1): 147–164, 2003.PubMedGoogle Scholar
  71. 71.
    Cloarec O, Dumas ME, Trygg J, Craig A, Barton RH, Lindon JC, et al. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies.Anal Chem 77: 517–526, 2005.PubMedGoogle Scholar
  72. 72.
    Ma’ayan A, Gardiner K, Iyengar R. The cognitive phenotype of Down syndrome: insights from intracellular network analysis.NeuroRx 3: 394–403, 2006.Google Scholar
  73. 73.
    Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites.NMR Biomed 13: 129–153, 2000.PubMedGoogle Scholar
  74. 74.
    Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in shortecho-time (1)H NMR spectra of the rat brain.J Magn Reson 141: 104–120, 1999.PubMedGoogle Scholar
  75. 75.
    Tsang TM, Griffin JL, Haselden J, Fish C, Holmes E. Metabolic characterization of distinct neuroanatomical regions in rats by magic angle spinning 1H nuclear magnetic resonance spectroscopy.Magn Reson Med 53: 1018–1024, 2005.PubMedGoogle Scholar
  76. 76.
    Tsang TM, Woodman B, McLoughlin GA, Griffin JL, Tabrizi SJ, Bates GP, et al. Metabolic characterization of the R6/2 transgenic mouse model of Huntington’s disease by high-resolution MAS 1H NMR spectroscopy.J Proteome Res 5: 483–492, 2006.PubMedGoogle Scholar
  77. 77.
    Griffin JL, Bollard M, Nicholson JK, Bhakoo K. Spectral profiles of cultured neuronal and glial cells derived from HRMAS (1)H NMR spectroscopy.NMR Biomed 15: 375–384, 2002.PubMedGoogle Scholar
  78. 78.
    Urenjak J, Williams SR, Gadian DG, Noble M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytesin vitro.J Neurochem 59: 55–61, 1992.PubMedGoogle Scholar
  79. 79.
    Hoang TQ, Bluml S, Dubowitz DJ, Moats R, Kopyov O, Jacques D, et al. Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington’s and Parkinson’s diseases.Neurology 50: 1033–1040, 1998.PubMedGoogle Scholar
  80. 80.
    Jenkins BG, Brouillet E, Chen YC, Storey E, Schulz JB, Kirschner P, et al. Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurodegenerative illness using spectroscopic imaging.J Cereb Blood Flow Metab 16: 450–461. 1996.PubMedGoogle Scholar
  81. 81.
    Jenkins BG, Rosas HD, Chen YC, Makabe T, Myers R, Mac-Donald M, et al. 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers.Neurology 50: 1357–1365, 1998.PubMedGoogle Scholar
  82. 82.
    Horska A, Naidu S, Herskovits EH, Wang PY, Kaufmann WE, Barker PB. Quantitative 1H MR spectroscopic imaging in early Rett syndrome.Neurology 54: 715–722, 2000.PubMedGoogle Scholar
  83. 83.
    Lucetti C, Del Dotto P, Gambaccini G, Bernardini S, Bianchi MC, Tosetti M, et al. Proton magnetic resonance spectroscopy (1H-MRS) of motor cortex and basal ganglia in de novo Parkinson’s disease patients.Neurol Sci 22: 69–70, 2001.PubMedGoogle Scholar
  84. 84.
    Tourbah A, Stievenart JL, Gout O, Fontaine B, Liblau R, Lubetzki C, et al. Localized proton magnetic resonance spectroscopy in relapsing remitting versus secondary progressive multiple sclerosis.Neurology 53: 1091–1097, 1999.PubMedGoogle Scholar
  85. 85.
    Pears MR, Cooper JD, Mitchison HM, Mortishire-Smith RJ, Pearce DA, Griffin JL. High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling deficit in cerebral tissue from a mouse model of Batten disease.J Biol Chem 280: 42508–42514, 2005.PubMedGoogle Scholar
  86. 86.
    Viant MR, Lyeth BG, Miller MG, Berman RF. An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model.NMR Biomed 18: 507–516, 2005.PubMedGoogle Scholar
  87. 87.
    Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, et al. Parkinson’s disease in twins: an etiologic study.Jama 281: 341–346, 1999.PubMedGoogle Scholar
  88. 88.
    Weeks RA, Piccini P, Harding AE, Brooks DJ. Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington’s disease.Ann Neurol 40: 49–54, 1996.PubMedGoogle Scholar
  89. 89.
    Sveinbjomsdottir S, Hicks AA, Jonsson T, Petursson H, Gugmundsson G, Frigge ML, et al. Familial aggregation of Parkinson’s disease in Iceland.N Engl J Med 343: 1765–1770, 2000.Google Scholar
  90. 90.
    Bender A, Auer DP, Merl T, Reilmann R, Saemann P, Yassouridis A, et al. Creatine supplementation lowers brain glutamate levels in Huntington’s disease.J Neurol 252: 36–41, 2005.PubMedGoogle Scholar
  91. 91.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism.Nature 392: 605–608, 1998.PubMedGoogle Scholar
  92. 92.
    Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease.Nat Genet 18: 106–108, 1998.PubMedGoogle Scholar
  93. 93.
    Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, et al. Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates.Proc Natl Acad Sci USA 92: 7105–7109. 1995.PubMedGoogle Scholar
  94. 94.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease.Science 276: 2045–2047, 1997.PubMedGoogle Scholar
  95. 95.
    Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism.Science 299: 256–259, 2003.PubMedGoogle Scholar
  96. 96.
    Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease.Neuron 44: 595–600, 2004.PubMedGoogle Scholar
  97. 97.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1.Science 304: 1158–1160, 2004.PubMedGoogle Scholar
  98. 98.
    Klawans HL, Stein RW, Tanner CM, Goetz CG. A pure parkinsonian syndrome following acute carbon monoxide intoxication.Arch Neurol 39: 302–304, 1982.PubMedGoogle Scholar
  99. 99.
    Huang CC, Lu CS, Chu NS, Hochberg F, Lilienfeld D, Olanow W, et al. Progression after chronic manganese exposure.Neurology 43: 1479–1483, 1993.PubMedGoogle Scholar
  100. 100.
    Helmuth L. Neuroscience. Pesticide causes Parkinson’s in rats.Science 290: 1068, 2000.PubMedGoogle Scholar
  101. 101.
    Langsten JW, Fomo LS, Rebert CS, Irwin I. Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey.Brain Res 292: 390–394, 1984.Google Scholar
  102. 102.
    Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxypheny-lalanine and 5-hydroxytryptophan as reserpine antagonists.Nature 180: 1200, 1957.PubMedGoogle Scholar
  103. 103.
    Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons.Eur J Pharmacol 5: 107–110, 1968.PubMedGoogle Scholar
  104. 104.
    Hastings TG, Lewis DA, Zigmond MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections.Proc Natl Acad Sci USA 93: 1956–1961, 1996.PubMedGoogle Scholar
  105. 105.
    Bloem BR, Irwin I, Buruma OJ, Haan J, Roos RA, Tetrud JW, et al. The MPTP model: versatile contributions to the treatment of idiopathic Parkinson’s disease.J Neurol Sci 97: 273–293, 1990PubMedGoogle Scholar
  106. 106.
    Chen YC, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O, et al. Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, micro-dialysis, and behavioral data.Magn Reson Med 38: 389–398. 1997.PubMedGoogle Scholar
  107. 107.
    Smith DA, Clarke LP, Fiedler JA, Murtagh FR, Bonaroti EA, Sengstock GJ, et al. Use of a clinical MR scanner for imaging the rat brain.Brain Res Bull 31: 115–120, 1993PubMedGoogle Scholar
  108. 108.
    Boska MD, Lewis TB, Destache CJ, Benner EJ, Nelson JA, Uberti M, et al. Quantitative 1H magnetic resonance spectroscopic imaging determines therapeutic immunization efficacy in an animal model of Parkinson’s disease.J Neurosci 25: 1691–1700, 2005.PubMedGoogle Scholar
  109. 109.
    Brownell AL, Jenkins BG, Elmaleh DR, Deacon TW, Spealman RD, Isacson O. Combined PET/MRS brain studies show dynamic and long-term physiological changes in a primate model of Parkinson’s disease.Nat Med 4: 1308–1312, 1998.PubMedGoogle Scholar
  110. 110.
    Podell M, Hadjiconstantinou M, Smith MA, Neff NH. Proton magnetic resonance imaging and spectroscopy identify metabolic changes in the striatum in the MPTP feline model of parkinsonism.Exp Neurol 179: 159–166, 2003.PubMedGoogle Scholar
  111. 111.
    Sperk G. Kainic acid seizures in the rat.Prog Neurobiol 42: 1–32, 1994.PubMedGoogle Scholar
  112. 112.
    Brouillet E, Conde F, Beal MF, Hantraye P. Replicating Huntington’s disease phenotype in experimental animals.Prog Neurobiol 59: 427–468, 1999.PubMedGoogle Scholar
  113. 113.
    Dautry C, Conde F, Brouillet E, Mittoux V, Beal MF, Bloch G, et al. Serial 1H-NMR spectroscopy study of metabolic impairment in primates chronically treated with the succinate dehydrogenase inhibitor 3-nitropropionic acid.Neurobiol Dis 6: 259–268, 1999.PubMedGoogle Scholar
  114. 114.
    Palfi S, Conde F, Riche D, Brouillet E, Dautry C, Mittoux V, et al. Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington’s disease.Nat Med 4: 963–966, 1998.PubMedGoogle Scholar
  115. 115.
    Mittoux V, Joseph JM, Conde F, Palfi S, Dautry C, Poyot T, et al. Restoration of cognitive and motor functions by ciliary neurotrophic factor in a primate model of Huntington’s disease.Hum Gene Ther 11: 1177–1187, 2000.PubMedGoogle Scholar
  116. 116.
    Garrod S, Bollard ME, Nicholls AW, Connor SC, Connelly J, Nicholson JK, et al. Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat.Chem Res Toxicol 18: 115–122, 2005.PubMedGoogle Scholar
  117. 117.
    Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders.Science 287: 1265–1269, 2000.PubMedGoogle Scholar
  118. 118.
    Richfield EK, O’Brien CF, Eskin T, Shoulson I. Heterogeneous dopamine receptor changes in early and late Huntington’s disease.Neurosci Lett 132: 121–126, 1991.PubMedGoogle Scholar
  119. 119.
    Holowenko D, Peeling J, Sutherland G. 1H NMR properties of N-acetylaspartylglutamate in extracts of nervous tissue of the rat.NMR Biomed 5: 43–47, 1992.PubMedGoogle Scholar
  120. 120.
    van Dellen A, Welch J, Dixon RM, Cordery P, York D, Styles P, et al. N-acetylaspartate and DARPP-32 levels decrease in the corpus striatum of Huntington’s disease mice.NeuroReport 11: 3751–3757, 2000.PubMedGoogle Scholar
  121. 121.
    Jenkins BG, Klivenyi P, Kustermann E, Andreassen OA, Ferrante RJ, Rosen BR, et al. Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice.J Neurochem 74: 2108–2119, 2000.PubMedGoogle Scholar
  122. 122.
    Underwood BR, Broadhurst D, Dunn WB, Ellis DI, Michell AW, Vacher C, et al. Huntington’s disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles.Brain 129: 877–886, 2006.PubMedGoogle Scholar
  123. 123.
    Henley SM, Bates GP, Tabrizi SJ. Biomarkers for neurodegenerative diseases.Curr Opin Neurol 18: 698–705, 2005.PubMedGoogle Scholar
  124. 124.
    Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment.J Intern Med 256: 240–246, 2004.PubMedGoogle Scholar
  125. 125.
    DeCarli C. Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment.Lancet Neurol 2: 15–21, 2003.PubMedGoogle Scholar
  126. 126.
    Metastasio A, Rinaldi P, Tarducci R, Mariani E, Feliziani FT, Cherubim A, et al. Conversion of MCI to dementia: role of proton magnetic resonance spectroscopy.Neurobiol Aging 27: 926–932, 2006.PubMedGoogle Scholar
  127. 127.
    Frederick BD, Lyoo IK, Satlin A, Ahn KH, Kim MJ, Yurgelun-Todd DA, et al. In vivo proton magnetic resonance spectroscopy of the temporal lobe in Alzheimer’s disease.Prog Neuropsycho-pharmacol Biol Psychiatry 28: 1313–1322, 2004.Google Scholar
  128. 128.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in Lewy bodies.Nature 388: 839–840, 1997.PubMedGoogle Scholar
  129. 129.
    Schlossmacher MG, Frosch MP, Gai WP, Medina M, Sharma N, Fomo L, et al. Parkin localizes to the Lewy bodies of Parkinson’s disease and dementia with Lewy bodies.Am J Pathol 160: 1655–1667, 2002.PubMedGoogle Scholar
  130. 130.
    Mader I, Roser W, Kappos L, Hagberg G, Seelig J, Radue EW, et al. Serial proton MR spectroscopy of contrast-enhancing multiple sclerosis plaques: absolute metabolic values over 2 years during a clinical pharmacological study.AJNR Am J Neuroradiol 21: 1220–1227, 2000.PubMedGoogle Scholar
  131. 131.
    Arnold DL, Matthews PM, Francis G, Antel J. Proton magnetic resonance spectroscopy of human brainin vivo in the evaluation of multiple sclerosis: assessment of the load of disease.Magn Reson Med 14: 154–159, 1990.PubMedGoogle Scholar
  132. 132.
    Davie CA, Barker GJ, Thompson AJ, Tofts PS, McDonald WI, Miller DH. 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis.J Neurol Neurosurg Psychiatry 63: 736–742, 1997.PubMedGoogle Scholar
  133. 133.
    Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, Francis GS, et al. Imaging axonal damage of normal-appearing white matter in multiple sclerosis.Brain 121: 103–113, 1998.PubMedGoogle Scholar
  134. 134.
    Narayana PA, Doyle TJ, Lai D, Wolinsky JS. Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis.Ann Neurol 43: 56–71, 1998.PubMedGoogle Scholar
  135. 135.
    Arnold DL, Riess GT, Matthews PM, Francis GS, Collins DL, Wolfson C, et al. Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis.Ann Neurol 36: 76–82, 1994.PubMedGoogle Scholar
  136. 136.
    Lindon JC, Holmes E, Nicholson JK. Pattern recognition methods and applications in biomedical magnetic resonance.Prog NMR Spectrosc 39: 1–40, 2001.Google Scholar
  137. 137.
    Nicholson JK, Higham DP, Timbrell JA, Sadler PJ. Quantitative high resolution 1H NMR urinalysis studies on the biochemical effects of cadmium in the rat.Mol Pharmacol 36: 398–404, 1989.PubMedGoogle Scholar
  138. 138.
    Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment.Nature 440: 1073–1077, 2006.PubMedGoogle Scholar
  139. 139.
    Ross BD, Hoang TQ, Bluml S, Dubowitz D, Kopyov OV, Jacques DB, et al.In vivo magnetic resonance spectroscopy of human fetal neural transplants.NMR Biomed 12: 221–236, 1999.PubMedGoogle Scholar
  140. 140.
    Baik HM, Choe BY, Lee HK, Suh TS, Son BC, Lee JM. Metabolic alterations in Parkinson’s disease after thalamotomy, as revealed by (1)H MR spectroscopy.Korean J Radiol 3: 180–188, 2002.PubMedGoogle Scholar
  141. 141.
    Baik HM, Choe BY, Son BC, Jeun SS, Kim MC, Lee KS, et al. Proton MR spectroscopic changes in Parkinson’s diseases after thalamotomy.Eur J Radiol 47: 179–187, 2003.PubMedGoogle Scholar
  142. 142.
    Verbessern P, Lemiere J, Eijnde BO, Swinnen S, Vanhees L, van Leemputte M, et al. Creatine supplementation in Huntington’s disease: a placebo-controlled pilot trial.Neurology 61: 925–930, 2003.Google Scholar
  143. 143.
    Hersch SM, Gevorkian S, Marder K, Moskowitz C, Feigin A, Cox M, et al. Creatine in Huntington’s disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2′dG.Neurology 66: 250–252, 2006.PubMedGoogle Scholar
  144. 144.
    Tsang TM, Woodman B, McLoughlin G, Griffin JL, Tabrizi SJ, Bates GP, et al. Metabolic characterisation of the R6/2 transgenic mouse model of Huntington’s disease by high-resolution MAS 1H NMR spectroscopy.J Proteome Res 5: 483–492, 2006.PubMedGoogle Scholar
  145. 145.
    Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, et al. Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease.J Neurosci 18: 156–163, 1998.PubMedGoogle Scholar
  146. 146.
    Tabrizi SJ, Blamire AM, Manners DN, Rajagopalan B, Styles P, Schapira AH, et al. Creatine therapy for Huntington’s disease: clinical and MRS findings in a 1-year pilot study.Neurology 61: 141–142, 2003.PubMedGoogle Scholar
  147. 147.
    Tsang TM, Huang JTJ, Holmes E, Bahn S. Metabolic profiling of plasma from discordant schizophrenia twins: correlation between lipid signals and global functioning in female schizophrenia patients.J Proteome Res 5: 756–760, 2006.PubMedGoogle Scholar
  148. 148.
    Tkac I, Rao R, Georgieff MK, Gruetter R. Developmental and regional changes in the neurochemical profile of the rat brain determined by in vivo 1H NMR spectroscopy.Magn Reson Med 50: 24–32, 2003.PubMedGoogle Scholar
  149. 149.
    Dautry C, Vaufrey F, Brouillet E, Bizat N, Henry PG, Conde F, et al. Early N-acetylaspartate depletion is a marker of neuronal dysfunction in rats and primates chronically treated with the mitochondrial toxin 3-nitropropionic acid.J Cereb Blood Flow Metab 20: 789–799, 2000.PubMedGoogle Scholar
  150. 150.
    Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G, et al. Creatine and cyclocreatine attenuate MPTP neurotoxicity.Exp Neurol 157: 142–149, 1999.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2006

Authors and Affiliations

  • Elaine Holmes
    • 1
  • Tsz M. Tsang
    • 1
  • Sarah J. Tabrizi
    • 2
  1. 1.Biological Chemistry, Biomedical Sciences Division, Faculty of Natural ScienceImperial College LondonSouth KensingtonUK
  2. 2.Department of Neurodegenerative Disease, Institute of NeurologyUniversity College LondonQueen SquareUK

Personalised recommendations