NeuroRX

, Volume 3, Issue 2, pp 254–263

The congenital disorders of glycosylation: A multifaceted group of syndromes

Article

Summary

The congenital disorders of glycosylation (CDG) are a rapidly expanding group of metabolic syndromes with a wide symptomatology and severity. They all stem from deficient N-glycosylation of proteins. To date the group contains 18 different subtypes: 12 of Type I (disrupted synthesis of the lipid-linked oligosaccharide precursor) and 6 of Type II (malfunctioning trimming/processing of the protein-bound oligosaccharide). Main features of CDG involve psychomotor retardation; ataxia; seizures; retinopathy; liver fibrosis; coagulopathies; failure to thrive; dysmorphic features, including inverted nipples and subcutaneous fat pads; and strabismus. No treatment currently is available for the vast majority of these syndromes (CDG-Ib and CDG-IIc are exceptions), even though attempts to synthesize drugs for the most common subtype, CDG-Ia, have been made. In this review we will discuss the individual syndromes, with focus on their neuronal involvement, available and possible treatments, and future directions.

Key Words

N-glycosylation CDG mannose synthetic compounds brain glycosylation ataxia cerebellar hypoplasia cerebellar hypoplasia seizures 

References

  1. 1.
    Freeze HH. Disorders in protein glycosylation and potential therapy: tip of an iceberg?J Pediatr 133: 593–600, 1998.PubMedCrossRefGoogle Scholar
  2. 2.
    Haltiwanger RS, Lowe JB. Role of glycosylation in development.Annu Rev Biochem 73: 491–537, 2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosac-charides.Annu Rev Biochem 54: 631–664, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum.Annu Rev Biochem 73: 1019–1049, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Jaeken J, Carchon H. Congenital disorders of glycosylation: a booming chapter of pediatrics.Curr Opin Pediatr 16: 434–439, 2004.PubMedCrossRefGoogle Scholar
  6. 6.
    Freeze HH, Aebi M. Altered glycan structures: the molecular basis of congenital disorders of glycosylation.Curr Opin Struct Biol 15: 490–498, 2005.PubMedCrossRefGoogle Scholar
  7. 7.
    Marquardt T, Denecke J. Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies.Eur J Pediatr 162: 359–379, 2003.PubMedGoogle Scholar
  8. 8.
    Jaeken J, Vanderschueren-Lodeweyckx M, Casaer P, Snoeck L, Corbeel L, Eggermont E et al. Familiar psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG deficiency, increased serum arylsulphatase A and increased CSF protein: a new syndrome?Pediatr Res 14: 179, 1980.CrossRefGoogle Scholar
  9. 9.
    Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis.Nat Genet 36: 579–581, 2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Frank CG, Grubenmann CE, Eyaid W, Berger EG, Aebi M, Hennet T. Identification and functional analysis of a defect in the human ALG9 gene: definition of congenital disorder of glycosylation type IL.Am J Hum Genet 75: 146–150, 2004.PubMedCrossRefGoogle Scholar
  11. 11.
    Grubenmann CE, Frank CG, Hulsmeier AJ, Schollen E, Matthijs G, Mayatepek E et al. Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik.Hum Mol Genet 13: 535–542, 2004.PubMedCrossRefGoogle Scholar
  12. 12.
    Wu X, Rush JS, Karaoglu D, Krasnewich D, Lubinsky MS, Waechter CJ et al. Deficiency of UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1 phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation Type IJ.Hum Mutat 22: 144–150, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Thiel C, Schwarz M, Peng J, Grzmil M, Hasilik M, Braulke T et al. A new type of congenital disorders of glycosylation (CDG-Ii) provides new insights into the early steps of dolichol-linked oligosaccharide biosynthesis.J Biol Chem 278: 22498–22505, 2003.PubMedCrossRefGoogle Scholar
  14. 14.
    Chantret I, Dancourt J, Dupre T, Delenda C, Bucher S, Vuillaumier-Barrot S et al. A deficiency in dolichyl-P-glucose: Glc1Man9GlcNAc2-PP-dolichyl alpha3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation.J Biol Chem 278: 9962–9971, 2003.PubMedCrossRefGoogle Scholar
  15. 15.
    Chantret I, Dupre T, Delenda C, Bucher S, Dancourt J, Bander A et al. Congenital disorders of glycosylation type Ig is defined by a deficiency in dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl mannosyltransferase.J Biol Chem 277: 25815–25822, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Schenk B, Imbach T, Frank CG, Grubenmann CE, Raymond GV, Hurvitz H et al. MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If.J Clin Invest 108: 1687–1695, 2001.PubMedGoogle Scholar
  17. 17.
    Kranz C, Denecke J, Lehrman MA, Ray S, Kienz P, Kreissel G et al. A mutation in the human MPDUl gene causes congenital disorder of glycosylation type If (CDG-If).J Clin Invest 108: 1613–1619, 2001.PubMedGoogle Scholar
  18. 18.
    Imbach T, Schenk B, Schollen E, Burda P, Stutz A, Grunewald S et al. Deficiency of dolichol-phosphate-mannose synthase-1 causes congenital disorder of glycosylation type Ie.J Clin Invest 105: 233–239, 2000.PubMedCrossRefGoogle Scholar
  19. 19.
    Körner C, Knauer R, Stephani U, Marquardt T, Lehle L, von Figura K. Carbohydrate deficient glycoprotein syndrome type IV: deficiency of dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase.Embo J 18: 6816–6822, 1999.PubMedCrossRefGoogle Scholar
  20. 20.
    Körner C, Knauer R, Holzbach U, Hanefeld F, Lehle L, von Figura K. Carbohydrate-deficient glycoprotein syndrome type V: deficiency of dolichyl-P-Glc:Man9GlcNAc2-PP-dolichyl glucosyltransferase.Proc Natl Acad Sci USA 95: 13200–13205, 1998.PubMedCrossRefGoogle Scholar
  21. 21.
    Niehues R, Hasilik M, Alton G, Korner C, Schiebe-Sukumar M, Koch HG et al. Carbohydrate-deficient glycoprotein syndrome type Ib: phosphomannose isomerase deficiency and mannose therapy.J Clin Invest 101: 1414–1420, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I.FEBS Lett 377: 318–320, 1995.PubMedCrossRefGoogle Scholar
  23. 23.
    Martinez-Duncker I, Dupre T, Piller V, Piller F, Candelier JJ, Trichet C et al. Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter.Blood 105: 2671–2676, 2005.PubMedCrossRefGoogle Scholar
  24. 24.
    Wu X, Steet RA, Bohorov O, Bakker J, Newell J, Krieger M et al. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder.Nat Med 10: 518–523, 2004.PubMedCrossRefGoogle Scholar
  25. 25.
    Hansske B, Thiel C, Liibke T, Hasilik M, Honing S, Peters V et al. Deficiency of UDP-galactose:N-acetylglucosamine beta-l,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId.J Clin Invest 109: 725–733, 2002.PubMedCrossRefGoogle Scholar
  26. 26.
    Liibke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Körner C. Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency.Nat Genet 28: 73–76, 2001.Google Scholar
  27. 27.
    De Praeter CM, Gerwig GJ, Bause E, Nuytinck LK, Vliegenthart JF, Breuer W et al. A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency.Am J Hum Genet 66: 1744–1756, 2000.PubMedCrossRefGoogle Scholar
  28. 28.
    Charuk JH, Tan J, Bemardini M, Haddad S, Reithmeier RA, Jaeken J et al. Carbohydrate-deficient glycoprotein syndrome type II: an autosomal recessive N-acetylglucosaminyltransferase II deficiency different from typical hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS).Eur J Biochem 230: 797–805, 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Stibler H, Jaeken J. Carbohydrate deficient serum transferrin in a new systemic hereditary syndrome.Arch Dis Child 65: 107–111, 1990.PubMedCrossRefGoogle Scholar
  30. 30.
    Lacey JM, Bergen HR, Magera MJ, Naylor S, O’Brien JF. Rapid determination of transferrin isoforms by immunoaffinity liquid chromatography and electrospray mass spectrometry.Clin Chem 47: 513–518, 2001.PubMedGoogle Scholar
  31. 31.
    Helander A, Bergstrom J, Freeze HH. Testing for congenital disorders of glycosylation by HPLC measurement of serum transferrin glycoforms.Clin Chem 50: 954–958, 2004.PubMedCrossRefGoogle Scholar
  32. 32.
    Carchon HA, Chevigne R, Falmagne JB, Jaeken J. Diagnosis of congenital disorders of glycosylation by capillary zone electrophoresis of serum transferrin.Clin Chem 50: 101–111, 2004.PubMedCrossRefGoogle Scholar
  33. 33.
    Charlwood J, Clayton P, Keir G, Mian N, Winchester B. Defective galactosylation of serum transferrin in galactosemia.Glycobiology 8: 351–357, 1998.PubMedCrossRefGoogle Scholar
  34. 34.
    Actamowicz M, Pronicka E. Carbohydrate deficient glycoprotein syndrome-like transferrin isoelectric focusing pattern in untreated fructosaemia.Eur J Pediatr 155: 347–348, 1996.Google Scholar
  35. 35.
    Stibler H, Borg S, Joustra M. Micro anion exchange chromatography of carbohydrate-deficient transferrin in serum in relation to alcohol consumption (Swedish Patent 8400587-5).Alcohol Clin Exp Res 10: 535–544, 1986.PubMedCrossRefGoogle Scholar
  36. 36.
    Callewaert N, Van Vlierberghe H, Van Hecke A, Laroy W, Delanghe J, Contreras R. Noninvasive diagnosis of liver cirrhosis using DNA sequencer-based total serum protein glycomics.Nat Med 10: 429–434, 2004.PubMedCrossRefGoogle Scholar
  37. 37.
    Hansen SH, Frank SR, Casanova JE. Cloning and characterization of human phosphomannomutase, a mammalian homologue of yeast SEC53.Glycobiology 7: 829–834, 1997.PubMedCrossRefGoogle Scholar
  38. 38.
    Kjaergaard S, Schwartz M, Skovby F. Congenital disorder of glycosylation type Ia (CDG-Ia): phenotypic spectrum of the R141H/ F119L genotype.Arch Dis Child 85: 236–239, 2001.PubMedCrossRefGoogle Scholar
  39. 39.
    Miossec-Chauvet E, Mikaeloff Y, Heron D, Merzoug V, Cormier-Daire V, de Lonlay P et al. Neurological presentation in pediatric patients with congenital disorders of glycosylation type Ia.Neuropediatrics 34: 1–6, 2003.PubMedCrossRefGoogle Scholar
  40. 40.
    Grunewald S, Schollen E, Van Schaftingen E, Jaeken J, Matthijs G. High residual activity of PMM2 in patients’ fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency).Am J Hum Genet 68: 347–354, 2001.PubMedCrossRefGoogle Scholar
  41. 41.
    Westphal V, Peterson S, Patterson M, Tournay A, Blumenthal A, Treacy EP et al. Functional significance of PMM2 mutations in mildly affected patients with congenital disorders of glycosylation Ia.Genet Med 3: 393–398, 2001.PubMedCrossRefGoogle Scholar
  42. 42.
    Di Rocco M, Barone R, Actami A, Burlina A, Carrozzi M, Dionisi-Vici C et al. Carbohydrate-deficient glycoprotein syndromes: the Italian experience.J Inherit Metab Dis 23: 391–395, 2000.PubMedCrossRefGoogle Scholar
  43. 43.
    Bohles H, Sewell AA, Gebhardt B, Reinecke-Luthge A, Kloppel G, Marquardt T. Hyperinsulinaemic hypoglycaemia-leading symptom in a patient with congenital disorder of glycosylation Ia (phosphomannomutase deficiency).J Inherit Metab Dis 24: 858–862, 2001.PubMedCrossRefGoogle Scholar
  44. 44.
    Damen G, de Klerk H, Huijmans J, den Hollander J, Sinaasappel M. Gastrointestinal and other clinical manifestations in 17 children with congenital disorders of glycosylation type Ia, Ib, and Ic.J Pediatr Gastroenterol Nutr 38: 282–287, 2004.PubMedCrossRefGoogle Scholar
  45. 45.
    Marquardt T, Hulskamp G, Gehrmann J, Debus V, Harms E, Kehl HG. Severe transient myocardial ischaemia caused by hypertrophic cardiomyopathy in a patient with congenital disorder of glycosylation type Ia.Eur J Pediatr 161: 524–527, 2002.PubMedCrossRefGoogle Scholar
  46. 46.
    Albach C, Klein RA, Schmitz B. Do rodent and human brains have different N-glycosylation patterns?Biol Chem 382: 187–194, 2001.PubMedCrossRefGoogle Scholar
  47. 47.
    Aronica E, van Kempen AA, van der Heide M, Poll-The BT, van Slooten HJ, Troost D et al. Congenital disorder of glycosylation type Ia: a clinicopathological report of a newborn infant with cerebellar pathology.Acta Neuropathol (Berl) 109: 433–442, 2005.CrossRefGoogle Scholar
  48. 48.
    Sun L, Eklund EA, Van Hove JL, Freeze HH, Thomas JA. Clinical and molecular characterization of the first adult congenital disorder of glycosylation (CDG) type Ic patient.Am J Med Genet A 137: 22–26, 2005.PubMedGoogle Scholar
  49. 49.
    Denecke J, Kranz C, Kemming D, Koch HG, Marquardt T. An activated 5′ cryptic splice site in the human ALG3 gene generates a premature termination codon insensitive to nonsense-mediated mRNA decay in a new case of congenital disorder of glycosylation type Id (CDG-Id).Hum Mutat 23: 477–486, 2004.PubMedCrossRefGoogle Scholar
  50. 50.
    Schollen E, Grunewald S, Keldermans L, Albrecht B, Korner C, Matthijs G. CDG-Id caused by homozygosity for an ALG3 mutation due to segmental maternal isodisomy UPD3(q21.3-qter).Eur J Med Genet 48: 153–158, 2005.PubMedCrossRefGoogle Scholar
  51. 51.
    Sun L, Eklund EA, Chung WK, Wang C, Cohen J, Freeze HH. Congenital disorder of glycosylation id presenting with hyperin-sulinemic hypoglycemia and islet cell hyperplasia.J Clin Endocrinol Metab 90: 4371–4375, 2005.PubMedCrossRefGoogle Scholar
  52. 52.
    Garcia-Silva MT, Matthijs G, Schollen E, Cabrera JC, Sanchez del Pozo J, Marti Herreros M et al. Congenital disorder of glycosylation (CDG) type Ie: a new patient.J Inherit Metab Dis 27: 591–600, 2004.PubMedCrossRefGoogle Scholar
  53. 53.
    Kim S, Westphal V, Srikrishna G, Mehta DP, Peterson S, Filiano J et al. Dolichol phosphate mannose synthase (DPMI) mutations define congenital disorder of glycosylation Ie (CDG-Ie).J Clin Invest 105: 191–198, 2000.PubMedCrossRefGoogle Scholar
  54. 54.
    Eklund EA, Newell JW, Sun L, Seo NS, Alper G, Willert J et al. Molecular and clinical description of the first US patients with congenital disorder of glycosylation Ig.Mol Genet Metab 84: 25–31, 2005.PubMedCrossRefGoogle Scholar
  55. 55.
    Eklund EA, Sun L, Westphal V, Northorp JL, Freeze HH, Scaglia F. Congenital disorder of glycosylation (CDG)-Ih associated with a severe hepato-intestinal phenotype and evolving central nervous system pathology.J Pediatr 147: 847–850, 2005.PubMedCrossRefGoogle Scholar
  56. 56.
    Schollen E, Frank CG, Keldermans L, Reyntjens R, Grubenmann CE, Clayton PT et al. Clinical and molecular features of three patients with congenital disorders of glycosylation type Ih (CDG-Ih) (ALG8 deficiency).J Med Genet 41: 550–556, 2004.PubMedCrossRefGoogle Scholar
  57. 57.
    Schwarz M, Thiel C, Lubbehusen J, Dorland B, de Koning T, von Figura K et al. Deficiency of GDP-Man:GlcNAc2-PP-dolichol mannosyltransferase causes congenital disorder of glycosylation type Ik.Am J Hum Genet 74: 472–481, 2004.PubMedCrossRefGoogle Scholar
  58. 58.
    Kranz C, Denecke J, Lehle L, Sohlbach K, Jeske S, Meinhardt F et al. Congenital disorder of glycosylation type Ik (CDG-Ik): a defect of mannosyltransferase I.Am J Hum Genet 74: 545–551, 2004.PubMedCrossRefGoogle Scholar
  59. 59.
    Gao N, Lehrman MA. Analyses of dolichol pyrophosphate-linked oligosaccharides in cell cultures and tissues by fluorophore-assisted carbohydrate electrophoresis.Glycobiology 12: 353–360, 2002.PubMedCrossRefGoogle Scholar
  60. 60.
    Weinstein M, Schollen E, Matthijs G, Neupert C, Hennet T, Grubenmann CE et al. CDG-IL: an infant with a novel mutation in the ALG9 gene and additional phenotypic features.Am J Med Genet A 136: 194–197, 2005.PubMedGoogle Scholar
  61. 61.
    Tan J, Dunn J, Jaeken J, Schachter H. Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development.Am J Hum Genet 59: 810–817, 1996.PubMedGoogle Scholar
  62. 62.
    Tan J, D’Agostaro AF, Bendiak B, Reck F, Sarkar M, Squire JA et al. The human UDP-N-acetylglucosamine: alpha-6-d-mannoside-beta-1,2-N-acetylglucosaminyltransferase II gene (MGAT2): Cloning of genomic DNA, localization to chromosome 14q21, expression in insect cells and purification of the recombinant protein.Eur J Biochem 231: 317–328, 1995.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang Y, Schachter H, Marth JD. Mice with a homozygous deletion of the Mgat2 gene encoding UDP-N-acetylglucosamine:alpha-6-D-mannoside betal, 2-N-acetylglucosaminyltransferase II: a model for congenital disorder of glycosylation type IIa.Biochim Biophys Acta 1573: 301–311, 2002.PubMedCrossRefGoogle Scholar
  64. 64.
    Van Geet C, Jaeken J, Freson K, Lenaerts T, Amout J, Vermylen J et al. Congenital disorders of glycosylation type Ia and IIa are associated with different primary haemostatic complications.J Inherit Metab Dis 24: 477–492, 2001.PubMedCrossRefGoogle Scholar
  65. 65.
    Marquardt T, Luhn K, Srikrishna G, Freeze HH, Harms E, Vest-weber D. Correction of leukocyte adhesion deficiency type II with oral fucose.Blood 94: 3976–3985, 1999.PubMedGoogle Scholar
  66. 66.
    Kotani N, Asano M, Iwakura Y, Takasaki S. Knockout of mouse beta 1,4-galactosyltransferase-1 gene results in a dramatic shift of outer chain moieties of N-glycans from type 2 to type 1 chains in hepatic membrane and plasma glycoproteins.Biochem J 357: 827–834, 2001.PubMedCrossRefGoogle Scholar
  67. 67.
    Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE et al. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function.J Cell Biol 157: 405–415, 2002.PubMedCrossRefGoogle Scholar
  68. 68.
    Spaapen LJ, Bakker JA, van der Meer SB, Sijstermans HJ, Steet RA, Wevers RA et al. Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder.J Inherit Metab Dis 28: 707–714, 2005.PubMedCrossRefGoogle Scholar
  69. 69.
    Kingsley DM, Kozarsky KF, Segal M, Krieger M. Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains.J Cell Biol 102: 1576–1585, 1986.PubMedCrossRefGoogle Scholar
  70. 70.
    Matthijs G, Foulquier F, Vasile E, Ungar D, Krieger M, Annaert W. Deficiencies in the different subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of congenital disorders of glycosylation. Abstract at the 2005 ASHG meeting, Salt Lake City, UT.Google Scholar
  71. 71.
    Willig TB, Breton-Gorius J, Elbim C, Mignotte V, Kaplan C, Mollicone R et al. Macrothrombocytopenia with abnormal demarcation membranes in megakaryocytes and neutropenia with a complete lack of sialyl-Lewis-X antigen in leukocytes: a new syndrome?Blood 97: 826–828, 2001.PubMedCrossRefGoogle Scholar
  72. 72.
    Westphal V, Kjaergaard S, Davis JA, Peterson SM, Skovby F, Freeze HH. Genetic and metabolic analysis of the first adult with congenital disorder of glycosylation type Ib: long-term outcome and effects of mannose supplementation.Mol Genet Metab 73: 77–85, 2001.PubMedCrossRefGoogle Scholar
  73. 73.
    Harms HK, Zimmer KP, Kumik K, Bertele-Harms RM, Weidinger S, Reiter K. Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency.Acta Paediatr 91: 1065–1072, 2002.PubMedCrossRefGoogle Scholar
  74. 74.
    Etzioni A, Tonetti M. Fucose supplementation in leukocyte adhesion deficiency type II.Blood 95: 3641–3643, 2000.PubMedGoogle Scholar
  75. 75.
    Etzioni A, Sturla L, Antonellis A, Green ED, Gershoni-Baruch R, Beminsone PM et al. Leukocyte adhesion deficiency (LAD) type II/carbohydrate deficient glycoprotein (CDG) IIc founder effect and genotype/phenotype correlation.Am J Med Genet 110: 131–135, 2002.PubMedCrossRefGoogle Scholar
  76. 76.
    Panneerselvam K, Freeze HH. Mannose corrects altered N-glycosylation in carbohydrate-deficient glycoprotein syndrome fibroblasts.J Clin Invest 97: 1478–1487, 1996.PubMedCrossRefGoogle Scholar
  77. 77.
    Mayatepek E, Kohlmuller D. Mannose supplementation in carbohydrate-deficient glycoprotein syndrome type I and phosphomannomutase deficiency.Eur J Pediatr 157: 605–606, 1998.PubMedCrossRefGoogle Scholar
  78. 78.
    Mayatepek E, Schroder M, Kohlmuller D, Bieger WP, Nutzenadel W. Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I.Acta Paediatr 86: 1138–1140, 1997.PubMedCrossRefGoogle Scholar
  79. 79.
    Kjaergaard S, Kristiansson B, Stibler H, Freeze HH, Schwartz M, Martinsson T et al. Failure of short-term mannose therapy of patients with carbohydrate-deficient glycoprotein syndrome type 1A.Acta Paediatr 87: 884–888, 1998.PubMedCrossRefGoogle Scholar
  80. 80.
    Eklund EA, Merbouh N, Ichikawa M, Nishikawa A, Clima JM, Dorman JA et al. Hydrophobic Man-1-P derivatives correct abnormal glycosylation in Type I congenital disorder of glycosylation fibroblasts.Glycobiology 15: 1084–1093, 2005.PubMedCrossRefGoogle Scholar
  81. 81.
    Muus U, Kranz C, Marquardt T, Meier C. cycloSaligenyl-man-nose-1-monophosphates as a new strategy in CDG-Ia therapy: hydrolysis, mechanistic insights and biological activity.Eur J Org Chem 2004: 1228–1235, 2004.CrossRefGoogle Scholar
  82. 82.
    Rutschow S, Thiem J, Kranz C, Marquardt T. Membrane-permeant derivatives of mannose-1-phosphate.Bioorg Med Chem 10: 4043–4049, 2002.PubMedCrossRefGoogle Scholar
  83. 83.
    Derossi C, Bode L, Eklund EA, Zhang F, Davis JA, Westphal V et al. Ablation of mouse phosphomannose isomerase (Mpi) causes mannose-6-phosphate accumulation, toxicity, and embryonic lethality.J Biol Chem December 8, 2005 [Epub].Google Scholar
  84. 84.
    Snyder EL, Dowdy SF. Cell penetrating peptides in drug delivery.Pharm Res 21: 389–393, 2004.PubMedCrossRefGoogle Scholar
  85. 85.
    Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse.Science 285: 1569–1572, 1999.PubMedCrossRefGoogle Scholar
  86. 86.
    Drouin-Garraud V, Beigrand M, Grunewald S, Seta N, Dacher JN, Henocq A et al. Neurological presentation of a congenital disorder of glycosylation CDG-Ia: implications for diagnosis and genetic counseling.Am J Med Genet 101: 46–49, 2001.PubMedCrossRefGoogle Scholar
  87. 87.
    Akaboshi S, Ohno K, Takeshita K. Neuroradiological findings in the carbohydrate-deficient glycoprotein syndrome.Neuroradiology 37: 491–495, 1995.PubMedCrossRefGoogle Scholar
  88. 88.
    Ohno K, Yuasa I, Akaboshi S, Itoh M, Yoshida K, Ehara H et al. The carbohydrate deficient glycoprotein syndrome in three Japanese children.Brain Dev 14: 30–35, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2006

Authors and Affiliations

  1. 1.Department of Cell and Molecular BiologyLund UniversityLundSweden
  2. 2.Program for Glycobiology and Carbohydrate ChemistryBurnham Institute for Medical ResearchLa Jolla

Personalised recommendations