, Volume 3, Issue 2, pp 235–245 | Cite as

Therapeutics development for spinal muscular atrophy

  • Charlotte J. Sumner


Spinal muscular atrophy is an autosomal recessive motor neuron disease that is the leading inherited cause of infant and early childhood mortality. Spinal muscular atrophy is caused by mutation of the telomeric copy of the survival motor neuron gene (SMN1), but all patients retain a centromeric copy of the gene,SMN2. SMN2 produces reduced amounts of full-length SMN mRNA, and spinal muscular atrophy likely results from insufficient levels of SMN protein in motor neurons. The SMN protein plays a well-established role in assembly of the spliceosome and may also mediate mRNA trafficking in the axon and nerve terminus of neurons. In patients, spinal muscular atrophy disease severity correlates inversely with increasedSMN2 gene copy number and, in transgenic mice lacking endogenous SMN, increasingSMN2 gene copy number from two to eight prevents the SMA disease phenotype. These observations suggest that increasing SMN expression levels may be beneficial to SMA patients. Currently pursued therapeutic strategies for SMA include induction ofSMN2 gene expression, modulation of splicing ofSMN2-derived transcripts, stabilization of SMN protein, neuroprotection of SMN deficit neurons, andSMN1 gene replacement. Early clinical trials of candidate therapeutics are now ongoing in SMA patients. Clinical trials in this disease present a unique set of challenges, including the development of meaningful outcome measures and disease biomarkers.

Key Words

Spinal muscular atrophy motor neuron survival motor neuron 


  1. 1.
    Pearn J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy.J Med Genet 15: 409–413, 1978.PubMedCrossRefGoogle Scholar
  2. 2.
    McAndrew PE, Parsons DW, Simard LR et al. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number.Am J Hum Genet 60: 1411–1422, 1997.PubMedCrossRefGoogle Scholar
  3. 3.
    Munsat TL, Davies KE. International SMA consortium meeting. (26–28 June 1992, Bonn, Germany).Neuromuscul Disord 2: 423–428, 1992PubMedCrossRefGoogle Scholar
  4. 4.
    Zerres K, Rudnik-Schonebom S. Natural history in proximal spinal muscular atrophy: clinical analysis of 445 patients and suggestions for a modification of existing classifications.Arch Neurol 52: 518–523, 1995.PubMedCrossRefGoogle Scholar
  5. 5.
    Crawford TO. Concerns about the design of clinical trials for spinal muscular atrophy.Neuromuscul Disord 14: 456–460, 2004PubMedCrossRefGoogle Scholar
  6. 6.
    Swoboda KJ, Prior TW, Scott CB et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function.Ann Neurol 57: 704–712, 2005.PubMedCrossRefGoogle Scholar
  7. 7.
    Ince SWaPG. Pathology of motor neuron disorders. In: Motor Neuron Disorders (Strong PJSaMJ, ed), pp 17–49. Philadelphia: Butterworth Heinemann, 2003.Google Scholar
  8. 8.
    Brzustowicz LM, Lehner T, Castilla LH et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3.Nature 344: 540–541, 1990.PubMedCrossRefGoogle Scholar
  9. 9.
    Melki J, Sheth P, Abdelhak S et al. Mapping of acute (type I) spinal muscular atrophy to chromosome 5ql2-ql4: The French Spinal Muscular Atrophy Investigators.Lancet 336: 271–273, 1990.PubMedCrossRefGoogle Scholar
  10. 10.
    Lefebvre S, Burglen L, Reboullet S et al. Identification and characterization of a spinal muscular atrophy-determining gene.Cell 80: 155–165, 1995.PubMedCrossRefGoogle Scholar
  11. 11.
    Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA).Hum Mutat 15: 228–237, 2000.PubMedCrossRefGoogle Scholar
  12. 12.
    Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy.Proc Natl Acad Sci USA 96: 6307–6311, 1999.PubMedCrossRefGoogle Scholar
  13. 13.
    Monani UR, Lorson CL, Parsons DW et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2.Hum Mol Genet 8: 1177–1183, 1999.PubMedCrossRefGoogle Scholar
  14. 14.
    Sumner CJ, Fischbeck, KH. Spinal muscular atrophy. In: Neurobiology of Disease (Gilman S, ed), San Diego: Elsevier (in press).Google Scholar
  15. 15.
    Lorson CL, Strasswimmer J, Yao JM et al. SMN oligomerization defect correlates with spinal muscular atrophy severity.Nat Genet 19: 63–66, 1998.PubMedCrossRefGoogle Scholar
  16. 16.
    Cifuentes-Diaz C, Frugier T, Tiziano FD et al. Deletion of murine SMN exon 7 directed to skeletal muscle leads to severe muscular dystrophy.J Cell Biol 152: 1107–1114, 2001.PubMedCrossRefGoogle Scholar
  17. 17.
    Lefebvre S, Burlet P, Liu Q et al. Correlation between severity and SMN protein level in spinal muscular atrophy.Nat Genet 16: 265–269, 1997.PubMedCrossRefGoogle Scholar
  18. 18.
    Coovert DD, Le TT, McAndrew PE et al. The survival motor neuron protein in spinal muscular atrophy.Hum Mol Genet 6: 1205–1214, 1997.PubMedCrossRefGoogle Scholar
  19. 19.
    Gavrilov DK, Shi X, Das K, Gilliam TC, Wang CH. Differential SMN2 expression associated with SMA severity.Nat Genet 20: 230–231, 1998.PubMedCrossRefGoogle Scholar
  20. 20.
    Soler-Botija C, Cusco I, Caselles L, Lopez E, Baiget M, Tizzano EF. Implication of fetal SMN2 expression in type I SMA pathogenesis: protection or pathological gain of function?J Neuropathol Exp Neurol 64: 215–223, 2005.PubMedGoogle Scholar
  21. 21.
    Parsons DW, McAndrew PE, Iannaccone ST, Mendell JR, Burghes AH, Prior TW. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number.Am J Hum Genet 63: 1712–1723, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy.Am J Hum Genet 70: 358–368, 2002.PubMedCrossRefGoogle Scholar
  23. 23.
    Prior TW, Swoboda KJ, Scott HD, Hejmanowski AQ. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2.Am J Med Genet A 130: 307–310, 2004.CrossRefGoogle Scholar
  24. 24.
    Parano E, Pavone L, Falsaperla R, Trifiletti R, Wang C. Molecular basis of phenotypic heterogeneity in siblings with spinal muscular atrophy.Ann Neurol 40: 247–251, 1996.PubMedCrossRefGoogle Scholar
  25. 25.
    Sumner CJ, Huynh TN, Markowitz JA et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells.Ann Neurol 54: 647–654, 2003.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu Q, Fischer U, Wang F, Dreyfuss G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins.Cell 90: 1013–1021, 1997.PubMedCrossRefGoogle Scholar
  27. 27.
    Patrizi AL, Tiziano F, Zappata S, Donati MA, Neri G, Brahe C. SMN protein analysis in fibroblast, amniocyte and CVS cultures from spinal muscular atrophy patients and its relevance for diagnosis.Eur J Hum Genet 7: 301–309, 1999.PubMedCrossRefGoogle Scholar
  28. 28.
    Paushkin S, Gubitz AK, Massenet S, Dreyfuss G. The SMN complex, an assemblyosome of ribonucleoproteins.Curr Opin Cell Biol 14: 305–312, 2002.PubMedCrossRefGoogle Scholar
  29. 29.
    Friesen WJ, Massenet S, Paushkin S, Wyce A, Dreyfuss G. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets.Mol Cell 7: 1111–1117, 2001.PubMedCrossRefGoogle Scholar
  30. 30.
    Friesen WJ, Paushkin S, Wyce A et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins.Mol Cell Biol 21: 8289–8300, 2001.PubMedCrossRefGoogle Scholar
  31. 31.
    Yong J, Wan L, Dreyfuss G. Why do cells need an assembly machine for RNA-protein complexes?Trends Cell Biol 14: 226–232, 2004.PubMedCrossRefGoogle Scholar
  32. 32.
    Will CL, Luhrmann R. Spliceosomal UsnRNP biogenesis, structure and function.Curr Opin Cell Biol 13: 290–301, 2001.PubMedCrossRefGoogle Scholar
  33. 33.
    Gabanella F, Carissimi C, Usiello A, Pellizzoni L. The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation.Hum Mol Genet 14: 3629–3642. 2005PubMedCrossRefGoogle Scholar
  34. 34.
    Wan L, Battle DJ, Yong J et al. The survival of motor neurons protein determines the capacity for snRNP assembly: biochemical deficiency in spinal muscular atrophy.Mol Cell Biol 25: 5543–5551, 2005.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang HL, Pan F, Hong D, Shenoy SM, Singer RH, Bassell GJ. Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization.J Neurosci 23: 6627–6637. 2003.PubMedGoogle Scholar
  36. 36.
    Rossoll W, Jablonka S, Andreassi C et al. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons.J Cell Biol 163: 801–812, 2003.PubMedCrossRefGoogle Scholar
  37. 37.
    Sharma A, Lambrechts A, Hao LT et al. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells.Exp Cell Res 309: 185–197, 2005PubMedCrossRefGoogle Scholar
  38. 38.
    Chan YB, Miguel-Aliaga I, Franks C et al. Neuromuscular defects in aDrosophila survival motor neuron gene mutant.Hum Mol Genet 12: 1367–1376, 2003.PubMedCrossRefGoogle Scholar
  39. 39.
    McWhorter ML, Monani UR, Burghes AH, Beattie CE. Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding.J Cell Biol 162: 919–931, 2003.PubMedCrossRefGoogle Scholar
  40. 40.
    Winkler C, Eggert C, Gradl D et al. Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy.Genes Dev 19: 2320–2330, 2005.PubMedCrossRefGoogle Scholar
  41. 41.
    Frugier T, Tiziano FD, Cifuentes-Diaz C et al. Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy.Hum Mol Genet 9: 849–858, 2000.PubMedCrossRefGoogle Scholar
  42. 42.
    Hsieh-Li HM, Chang JG, Jong YJ et al. A mouse model for spinal muscular atrophy.Nat Genet 24: 66–70, 2000.PubMedCrossRefGoogle Scholar
  43. 43.
    Monani UR, Sendtner M, Coovert DD et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy.Hum Mol Genet 9: 333–339, 2000.PubMedCrossRefGoogle Scholar
  44. 44.
    Le TT, Pham LT, Butchbach ME et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN.Hum Mol Genet 14: 845–857, 2005.PubMedCrossRefGoogle Scholar
  45. 45.
    Kerr DA, Nery JP, Traystman RJ, Chau BN, Hardwick JM. Survival motor neuron protein modulates neuron-specific apoptosis.Proc Natl Acad Sci USA 97: 13312–13317, 2000.PubMedCrossRefGoogle Scholar
  46. 46.
    Echaniz-Laguna A, Miniou P, Bartholdi D, Melki J. The promoters of the survival motor neuron gene (SMN) and its copy (SMNc) share common regulatory elements.Am J Hum Genet 64: 1365–1370, 1999.PubMedCrossRefGoogle Scholar
  47. 47.
    Monani UR, McPherson JD, Burghes AH. Promoter analysis of the human centromeric and telomeric survival motor neuron genes (SMNC and SMNT).Biochim Biophys Acta 1445: 330–336, 1999.PubMedCrossRefGoogle Scholar
  48. 48.
    Rouget R, Vigneault F, Codio C et al. Characterization of the survival motor neuron (SMN) promoter provides evidence for complex combinatorial regulation in undifferentiated and differentiated P19 cells.Biochem J 385: 433–443, 2005.PubMedCrossRefGoogle Scholar
  49. 49.
    Baron-Delage S, Abadie A, Echaniz-Laguna A, Melki J, Beretta L. Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes.Mol Med 6: 957–968, 2000.PubMedGoogle Scholar
  50. 50.
    Majumder S, Varadharaj S, Ghoshal K, Monani U, Burghes AH, Jacob ST. Identification of a novel cyclic AMP-response element (CRE-II) and the role of CREB-1 in the cAMP-induced expression of the survival motor neuron (SMN) gene.J Biol Chem 279: 14803–14811, 2004.PubMedCrossRefGoogle Scholar
  51. 51.
    Kemochan LE, Russo ML, Woodling NS et al. The role of histone acetylation in SMN gene expression.Hum Mol Genet 14: 1171–1182, 2005.CrossRefGoogle Scholar
  52. 52.
    Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H. Treatment of spinal muscular atrophy by sodium butyrate.Proc Natl Acad Sci USA 98: 9808–9813, 2001.PubMedCrossRefGoogle Scholar
  53. 53.
    Brichta L, Hofmann Y, Hahnen E et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy.Hum Mol Genet 12: 2481–2489, 2003.PubMedCrossRefGoogle Scholar
  54. 54.
    Andreassi C, Angelozzi C, Tiziano FD et al. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy.Eur J Hum Genet 12: 59–65, 2004.PubMedCrossRefGoogle Scholar
  55. 55.
    Brahe C, Vitali T, Tiziano FD et al. Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients.Eur J Hum Genet 13: 256–259, 2005.PubMedCrossRefGoogle Scholar
  56. 56.
    Russman BS, Iannaccone ST, Samaha FJ. A phase 1 trial of riluzole in spinal muscular atrophy.Arch Neurol 60: 1601–1603. 2003.PubMedCrossRefGoogle Scholar
  57. 57.
    Miller RG, Moore DH, Dronsky V et al. A placebo-controlled trial of gabapentin in spinal muscular atrophy.J Neurol Sci 191: 127–131, 2001.PubMedCrossRefGoogle Scholar
  58. 58.
    Merlini L, Solari A, Vita G et al. Role of gabapentin in spinal muscular atrophy: results of a multicenter, randomized Italian study.J Child Neurol 18: 537–541, 2003.PubMedCrossRefGoogle Scholar
  59. 59.
    Butchbach M, Le TT, Burghes AHM. Protective effects of butyrate analogues and prodrugs on a mouse model for spinal muscular atrophy.Neurosci Meeting 23: 27, 2004.Google Scholar
  60. 60.
    Ryu H, Smith K, Camelo SI et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice.J Neurochem 93: 1087–1093, 2005.PubMedCrossRefGoogle Scholar
  61. 61.
    Grzeschik SM, Ganta M, Prior TW, Heavlin WD, Wang CH. Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells.Ann Neurol 58: 194–202, 2005.PubMedCrossRefGoogle Scholar
  62. 62.
    Jarecki J, Chen X, Bernardino A et al. Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy.Hum Mol Genet 14: 2003–2018, 2005.PubMedCrossRefGoogle Scholar
  63. 63.
    Lorson CL, Androphy EJ. An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN.Hum Mol Genet 9: 259–265, 2000.PubMedCrossRefGoogle Scholar
  64. 64.
    Cartegni L, Krainer AR. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1.Nat Genet 30: 377–384, 2002.PubMedCrossRefGoogle Scholar
  65. 65.
    Kashima T, Manley JL. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy.Nat Genet 34: 460–463, 2003.PubMedCrossRefGoogle Scholar
  66. 66.
    Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B. Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2).Proc Natl Acad Sci USA 97: 9618–9623, 2000.PubMedCrossRefGoogle Scholar
  67. 67.
    Hofmann Y, Wirth B. hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-betal.Hum Mol Genet 11: 2037–2049, 2002.PubMedCrossRefGoogle Scholar
  68. 68.
    Young PJ, DiDonato CJ, Hu D, Kothary R, Androphy EJ, Lorson CL. SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 beta 1.Hum Mol Genet 11: 577–587, 2002.PubMedCrossRefGoogle Scholar
  69. 69.
    Andreassi C, Jarecki J, Zhou J et al. Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients.Hum Mol Genet 10: 2841–2849, 2001.PubMedCrossRefGoogle Scholar
  70. 70.
    Cartegni L, Krainer AR. Correction of disease-associated exon skipping by synthetic exon-specific activators.Nat Struct Biol 10: 120–125, 2003.PubMedCrossRefGoogle Scholar
  71. 71.
    Skordis LA, Dunckley MG, Yue B, Eperon IC, Muntoni F. Bi-functional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts.Proc Natl Acad Sci USA 100: 4114–4119, 2003.PubMedCrossRefGoogle Scholar
  72. 72.
    Lunn MR, Root DE, Martino AM et al. Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism.Chem Biol 11: 1489–1493, 2004.PubMedCrossRefGoogle Scholar
  73. 73.
    Wolstencroft EC, Mattis V, Bajer AA, Young PJ, Lorson CL. A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels.Hum Mol Genet 14: 1199–1210, 2005.PubMedCrossRefGoogle Scholar
  74. 74.
    Chang HC, Hung WC, Chuang YJ, Jong YJ. Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/ proteasome pathway.Neurochem Int 45: 1107–1112, 2004.PubMedCrossRefGoogle Scholar
  75. 75.
    Haddad H, Cifuentes-Diaz C, Miroglio A, Roblot N, Joshi V, Melki J. Riluzole attenuates spinal muscular atrophy disease progression in a mouse model.Muscle Nerve 28: 432–437, 2003.PubMedCrossRefGoogle Scholar
  76. 76.
    Lesbordes JC, Cifuentes-Diaz C, Miroglio A et al. Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy.Hum Mol Genet 12: 1233–1239, 2003.PubMedCrossRefGoogle Scholar
  77. 77.
    Azzouz M, Le T, Ralph GS et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy.J Clin Invest 114: 1726–1731, 2004.PubMedGoogle Scholar
  78. 78.
    Harper JM, Krishnan C, Darman JS et al. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats.Proc Natl Acad Sci USA 101: 7123–7128. 2004.PubMedCrossRefGoogle Scholar
  79. 79.
    Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT. Regular exercise is beneficial to a mouse model of amyotrophic lateral sclerosis.Ann Neurol 53: 804–807, 2003.PubMedCrossRefGoogle Scholar
  80. 80.
    Mahoney DJ, Rodriguez C, Devries M, Yasuda N, Tarnopolsky MA. Effects of high-intensity endurance exercise training in the G93A mouse model of amyotrophic lateral sclerosis.Muscle Nerve 29: 656–662, 2004.PubMedCrossRefGoogle Scholar
  81. 81.
    Grondard C, Biondi O, Armand AS et al. Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse.J Neurosci 25: 7615–7622, 2005.PubMedCrossRefGoogle Scholar
  82. 82.
    Bertini E, Burghes A, Bushby K, et al. 134th ENMC International Workshop: Outcome Measures and Treatment of Spinal Muscular Atrophy11–13 February 2005, Naarden, The Netherlands.Neuromuscul Disord 15: 802–816, 2005.PubMedCrossRefGoogle Scholar
  83. 83.
    Iannaccone ST. Outcome measures for pediatric spinal muscular atrophy.Arch Neurol 59: 1445–1450, 2002.PubMedCrossRefGoogle Scholar
  84. 84.
    Iannaccone ST, Hynan LS. Reliability of 4 outcome measures in pediatric spinal muscular atrophy.Arch Neurol 60: 1130–1136, 2003.PubMedCrossRefGoogle Scholar
  85. 85.
    Sumner C, Kolb, SJ, Harmison, GG, Jeffries, NO, Schadt, K, Finkel, RS, Dreyfuss, G, Fischbeck, KH. SMN mRNA and protein levels in peripheral blood: biomarkers for SMA clinical trials.Neurology, in press.Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2006

Authors and Affiliations

  • Charlotte J. Sumner
    • 1
  1. 1.Neurogenetics Branch, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesda

Personalised recommendations