NeuroRX

, Volume 3, Issue 2, pp 154–169 | Cite as

Hypothermic neuroprotection

Article

Summary

The possibility that hypothermia during or after resuscitation from asphyxia at birth, or cardiac arrest in adults, might reduce evolving damage has tantalized clinicians for a very long time. It is now known that severe hypoxia-ischemia may not necessarily cause immediate cell death, but can precipitate a complex biochemical cascade leading to the delayed neuronal loss. Clinically and experimentally, the key phases of injury include a latent phase after reperfusion, with initial recovery of cerebral energy metabolism but EEG suppression, followed by a secondary phase characterized by accumulation of cytotoxins, seizures, cytotoxic edema, and failure of cerebral oxidative metabolism starting 6 to 15 h post insult. Although many of the secondary processes can be injurious, they appear to be primarily epiphenomena of the ‘execution’ phase of cell death. Studies designed around this conceptual framework have shown that moderate cerebral hypothermia initiated as early as possible before the onset of secondary deterioration, and continued for a sufficient duration in relation to the severity of the cerebral injury, has been associated with potent, long-lasting neuroprotection in both adult and perinatal species. Two large controlled trials, one of head cooling with mild hypothermia, and one of moderate whole body cooling have demonstrated that post resuscitation cooling is generally safe in intensive care, and reduces death or disability at 18 months of age after neonatal encephalopathy. These studies, however, show that only a subset of babies seemed to benefit. The challenge for the future is to find ways of improving the effectiveness of treatment.

Key Words

Hypothermia induced hypoxic-ischemic encephalopathy hypoxia 

References

  1. 1.
    Gunn AJ, Gunn TR. Changes in risk factors for hypoxic-ischaemic seizures in term infants.Aust N Z J Obstet Gynaecol 37: 36–39, 1997.PubMedCrossRefGoogle Scholar
  2. 2.
    Floyer J. An essay to restore the dipping of infants in their baptism; with a dialogue betwixt a curate and a practitioner, concerning the manner of immersion. London: Holland, 1722.Google Scholar
  3. 3.
    Polderman KH. Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 1: Indications and evidence.Intensive Care Med 30: 556–75. 2004.PubMedCrossRefGoogle Scholar
  4. 4.
    Hippocrates. De Vetere Medicina. Translation: Jones WHS, Withington ET. Loeb Classical Library, 460-375 BC.Google Scholar
  5. 5.
    Larrey IJ. In: Memoirs of military service and campaigns of the French armies. [Vol. 2], pp 156–164. Baltimore: Cushing, 1814.Google Scholar
  6. 6.
    Fay T. Early experiences with local and generalized refrigeration of the human brain.J Neurosurg 16: 239–259, 1959.PubMedCrossRefGoogle Scholar
  7. 7.
    Rosomoff HL. Hypothermia and cerebral vascular lesions. I. Experimental interruption of the middle cerebral artery during hypothermia.J Neurosurg 13: 244–55, 1956.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosomoff HL, Holaday DA. Cerebral blood flow and cerebral oxygen consumption during hypothermia.Am J Physiol 179: 85–8, 1954.PubMedGoogle Scholar
  9. 9.
    Westin B, Miller JA, Jr., Boles A. Hypothermia induced during asphyxiation: its effects on survival rate, learning and maintenance of the conditioned response in rats.Acta Paediatr 52: 49–60, 1963.PubMedCrossRefGoogle Scholar
  10. 10.
    Nurse S, Corbett D. Direct measurement of brain temperature during and after intraischemic hypothermia: correlation with behavioral, physiological, and histological endpoints.J Neurosci 14: 7726–7734, 1994.PubMedGoogle Scholar
  11. 11.
    Westin B, Miller JA, Jr., Nyberg R, Wedenberg E. Neonatal asphyxia pallida treated with hypothermia alone or with hypothermia and transfusion of oxygenated blood.Surgery 45: 868–79, 1959.PubMedGoogle Scholar
  12. 12.
    Miller JA, Jr., Miller FS, Westin B. Hypothermia in the Treatment of Asphyxia Neonatorum.Biol Neonat 20: 148–63, 1964.CrossRefGoogle Scholar
  13. 13.
    Cordey R. Hypothermia in Resuscitating Newboms in White Asphyxia; a Report of 14 Cases.Obstet Gynecol 24: 760–7, 1964.PubMedGoogle Scholar
  14. 14.
    Cordey R, Chiolero R, Miller JA, Jr. Resuscitation of neonates by hypothermia: report on 20 cases with acid-base determination on 10 cases and the long-term development of 33 cases.Resuscitation 2: 169–81, 1973.PubMedCrossRefGoogle Scholar
  15. 15.
    Dunn JM, Miller JA, Jr. Hypothermia combined with positive pressure ventilation in resuscitation of the asphyxiated neonate. Clinical observations in 28 infants.Am J Obstet Gynecol 104: 58–67, 1969.PubMedGoogle Scholar
  16. 16.
    Silverman WA, Fertig JW, Berger AP. The influence of the thermal environment upon the survival of newly born premature infants.Pediatrics 22: 876–86, 1958.PubMedGoogle Scholar
  17. 17.
    Bohn DJ, Biggar WD, Smith CR, Conn AW, Barker GA. Influence of hypothermia, barbiturate therapy, and intracranial pressure monitoring on morbidity and mortality after near-drowning.Crit Care Med 14: 529–34, 1986.PubMedCrossRefGoogle Scholar
  18. 18.
    Azzopardi D, Wyatt JS, Cady EB, Delpy DT, Baudin J, Stewart AL, et al. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy.Pediatr Res 25: 445–51, 1989.PubMedCrossRefGoogle Scholar
  19. 19.
    Roth SC, Edwards AD, Cady EB, Delpy DT, Wyatt JS, Azzopardi D, et al. Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year.Dev Med Child Neurol 34: 285–295, 1992.PubMedCrossRefGoogle Scholar
  20. 20.
    Roth SC, Baudin J, Cady E, Johal K, Townsend JP, Wyatt JS, et al. Relation of deranged neonatal cerebral oxidative metabolism with neurodevelopmental outcome and head circumference at 4 years.Dev Med Child Neurol 39: 718–25, 1997.PubMedCrossRefGoogle Scholar
  21. 21.
    Lorek A, Takei Y, Cady EB, Wyatt JS, Penrice J, Edwards AD, et al. Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy.Pediatr Res 36: 699–706, 1994.PubMedCrossRefGoogle Scholar
  22. 22.
    Mehmet H, Yue X, Penrice J, Cady E, Wyatt JC, Sarraf C, et al. Relation of impaired energy metabolism to apoptosis and necrosis following transient cerebral hypoxia-ischaemia.Cell Death Differ 5: 321–329, 1998.PubMedCrossRefGoogle Scholar
  23. 23.
    Tan WK, Williams CE, During MJ, Mallard CE, Gunning MI, Gunn AJ, et al. Accumulation of cytotoxins during the development of seizures and edema after hypoxic-ischemic injury in late gestation fetal sheep.Pediatr Res 39: 791–797, 1996.PubMedCrossRefGoogle Scholar
  24. 24.
    Williams CE, Gunn A, Gluckman PD. Time course of intracellular edema and epileptiform activity following prenatal cerebral ischemia in sheep.Stroke 22: 516–521, 1991.PubMedCrossRefGoogle Scholar
  25. 25.
    Obrenovitch TP, Richards DA. Extracellular neurotransmitter changes in cerebral ischaemia.Cerebrovasc Brain Metab Rev 7: 1–54, 1995.PubMedGoogle Scholar
  26. 26.
    Gunn AJ, Parer JT, Mallard EC, Williams CE, Gluckman PD. Cerebral histologic and electrocorticographic changes after asphyxia in fetal sheep.Pediatr Res 31: 486–491, 1992.PubMedCrossRefGoogle Scholar
  27. 27.
    Gunn AJ, Gunn TR, de Haan HH, Williams CE, Gluckman PD. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs.J Clin Invest 99: 248–256, 1997.PubMedCrossRefGoogle Scholar
  28. 28.
    Beilharz EJ, Williams CE, Dragunow M, Sirimanne ES, Gluckman PD. Mechanisms of delayed cell death following hypoxic-ischemic injury in the immature rat: evidence for apoptosis during selective neuronal loss.Mol Brain Res 29: 1–14, 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Dimlich RV, Showers MJ, Shipley MT. Densitometric analysis of cytochrome oxidase in ischemic rat brain.Brain Res 516: 181–91. 1990.PubMedCrossRefGoogle Scholar
  30. 30.
    Wagner KR, Kleinholz M, Myers RE. Delayed decreases in specific brain mitochondrial electron transfer complex activities and cytochrome concentrations following anoxia/ischemia.J Neurol Sci 100: 142–51, 1990.PubMedCrossRefGoogle Scholar
  31. 31.
    Nelson C, Silverstein FS. Acute disruption of cytochrome oxidase activity in brain in a perinatal rat stroke model.Pediatr Res 36: 12–9, 1994.PubMedCrossRefGoogle Scholar
  32. 32.
    Wagner KR, Kleinholz M, Myers RE. Delayed onset of neurologic deterioration following anoxia/ischemia coincides with appearance of impaired brain mitochondrial respiration and decreased cytochrome oxidase activity.J Cereb Blood Flow Metab 10: 417–23, 1990.PubMedCrossRefGoogle Scholar
  33. 33.
    Schild L, Huppelsberg J, Kahlert S, Keilhoff G, Reiser G. Brain mitochondria are primed by moderate Ca2+ rise upon hypoxia/ reoxygenation for functional breakdown and morphological disintegration.J Biol Chem 278: 25454–60, 2003.PubMedCrossRefGoogle Scholar
  34. 34.
    Vannucci RC, Towfighi J, Vannucci SJ. Secondary energy failure after cerebral hypoxia-ischemia in the immature rat.J Cereb Blood Flow Metab 24: 1090–7, 2004.PubMedCrossRefGoogle Scholar
  35. 35.
    Zipfel GJ, Babcock DJ, Lee JM, Choi DW. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium.J Neurotrauma 17: 857–69, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    Clawson TF, Vannucci SJ, Wang GM, Seaman LB, Yang XL, Lee WH. Hypoxia-ischemia-induced apoptotic cell death correlates with IGF-I mRNA decrease in neonatal rat brain.Biol Signals Recept 8: 281–93, 1999.PubMedCrossRefGoogle Scholar
  37. 37.
    Bagenholm R, Nilsson UA, Gotborg CW, Kjellmer I. Free radicals are formed in the brain of fetal sheep during reperfusion after cerebral ischemia.Pediatr Res 43: 271–275, 1998.PubMedCrossRefGoogle Scholar
  38. 38.
    Yan EB, Unthank JK, Castillo-Melendez M, Miller SL, Langford SJ, Walker DW. Novel method for in vivo hydroxyl radical measurement by microdialysis in fetal sheep brain in utero.J Appl Physiol 98: 2304–10, 2005.PubMedCrossRefGoogle Scholar
  39. 39.
    Giulian D, Vaca K. Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system.Stroke 24: 184–90, 1993.Google Scholar
  40. 40.
    Graham EM, Sheldon RA, Flock DL, Ferriero DM, Martin LJ, O’Riordan DP, et al. Neonatal mice lacking functional Fas death receptors are resistant to hypoxic-ischemic brain injury.Neurobiol Dis 17: 89–98, 2004.PubMedCrossRefGoogle Scholar
  41. 41.
    Gehrmann J, Banati RB, Wiessner C, Hossmann KA, Kreutzberg GW. Reactive microglia in cerebral ischaemia: an early mediator of tissue damage?Neuropathol Appl Neurobiol 21: 277–89, 1995.PubMedCrossRefGoogle Scholar
  42. 42.
    Allan SM, Rothwell NJ. Inflammation in central nervous system injury.Philos Trans R Soc Lond B Biol Sci 358: 1669–77, 2003.PubMedCrossRefGoogle Scholar
  43. 43.
    Silverstein FS, Barks JD, Hagan P, Liu XH, Ivacko J, Szaflarski J. Cytokines and perinatal brain injury.Neurochem Int 30: 375–83, 1997.PubMedCrossRefGoogle Scholar
  44. 44.
    Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development.Cell 88: 347–54, 1997.PubMedCrossRefGoogle Scholar
  45. 45.
    Yue X, Mehmet H, Penrice J, Cooper C, Cady E, Wyatt JS, et al. Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia.Neuropathol Appl Neurobiol 23: 16–25, 1997.PubMedCrossRefGoogle Scholar
  46. 46.
    Dell’Anna E, Chen Y, Engidawork E, Andersson K, Lubec G, Luthman J, et al. Delayed neuronal death following perinatal asphyxia in rat.Exp Brain Res 115: 105–15, 1997.PubMedCrossRefGoogle Scholar
  47. 47.
    Ishimaru MJ, Ikonomidou C, Tenkova TI, Der TC, Dikranian K, Sesma MA, et al. Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain.J Comp Neurol 408: 461–76, 1999.PubMedCrossRefGoogle Scholar
  48. 48.
    Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link.Nat Rev Mol Cell Biol 4: 552–65. 2003.PubMedCrossRefGoogle Scholar
  49. 49.
    Johnston MV. Excitotoxicity in perinatal brain injury.Brain Pathol 15: 234–40, 2005.PubMedCrossRefGoogle Scholar
  50. 50.
    Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria.Mol Neurobiol 27: 325–55, 2003.PubMedCrossRefGoogle Scholar
  51. 51.
    Taylor DL, Edwards AD, Mehmet H. Oxidative metabolism, apoptosis and perinatal brain injury.Brain Pathol 9: 93–117. 1999.PubMedCrossRefGoogle Scholar
  52. 52.
    MacGibbon GA, Lawlor PA, Sirimanne ES, Walton MR, Connor B, Young D, et al. Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus.Brain Res 750: 223–234, 1997.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhu C, Wang X, Hagberg H, Blomgren K. Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia.J Neurochem 75: 819–829, 2000.PubMedCrossRefGoogle Scholar
  54. 54.
    Samejima K, Tone S, Kottke TJ, Enari M, Sakahira H, Cooke CA, et al. Transition from caspase-dependent to caspase-independent mechanisms at the onset of apoptotic execution.J Cell Biol 143: 225–39, 1998.PubMedCrossRefGoogle Scholar
  55. 55.
    Edwards AD, Yue X, Squier MV, Thoresen M, Cady EB, Penrice J, et al. Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia.Biochem Biophys Res Commun 217: 1193–1199, 1995.PubMedCrossRefGoogle Scholar
  56. 56.
    Edwards AD, Yue X, Cox P, Hope PL, Azzopardi DV, Squier MV, et al. Apoptosis in the brains of infants suffering intrauterine cerebral injury.Pediatr Res 42: 684–689, 1997.PubMedCrossRefGoogle Scholar
  57. 57.
    Scott RJ, Hegyi L. Cell death in perinatal hypoxic-ischaemic brain injury.Neuropathol Appl Neurobiol 23: 307–14, 1997.PubMedCrossRefGoogle Scholar
  58. 58.
    Gottron FJ, Ying HS, Choi DW. Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death.Mol Cell Neurosci 9: 159–69, 1997.PubMedCrossRefGoogle Scholar
  59. 59.
    Portera-Cailliau C, Rice DL, Martin LJ. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum.J Comp Neurol 378: 70–87, 1997.PubMedGoogle Scholar
  60. 60.
    Du C, Hu R, Csemansky CA, Hsu CY, Choi DW. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis?J Cereb Blood Flow Metab 16: 195–201, 1996.PubMedCrossRefGoogle Scholar
  61. 61.
    Nakajima W, Ishida A, Lange MS, Gabrielson KL, Wilson MA, Martin LJ, et al. Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat.J Neurosci 20: 7994–8004, 2000.PubMedGoogle Scholar
  62. 62.
    Rothstein RP, Levison SW. Gray matter oligodendrocyte progenitors and neurons die caspase-3 mediated deaths subsequent to mild perinatal hypoxic/ischemic insults.Dev Neurosci 27: 149–59, 2005.PubMedCrossRefGoogle Scholar
  63. 63.
    Edwards AD, Mehmet H. Apoptosis in perinatal hypoxic-ischaemic cerebral damage.Neuropathol Appl Neurobiol 22: 494–498, 1996.PubMedCrossRefGoogle Scholar
  64. 64.
    Northington FJ, Ferriero DM, Flock DL, Martin LJ. Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis.J Neurosci 21: 1931–8, 2001.PubMedGoogle Scholar
  65. 65.
    Ness JK, Romanko MJ, Rothstein RP, Wood TL, Levison SW. Perinatal hypoxia-ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors.Dev Neurosci 23: 203–8, 2001.PubMedCrossRefGoogle Scholar
  66. 66.
    Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury.J Neurosci 21: 1302–12, 2001.PubMedGoogle Scholar
  67. 67.
    Laptook AR, Corbett RJ, Sterett R, Burns DK, Garcia D, Tollefsbol G. Modest hypothermia provides partial neuroprotection when used for immediate resuscitation after brain ischemia.Pediatr Res 42: 17–23, 1997.PubMedCrossRefGoogle Scholar
  68. 68.
    Haaland K, Loberg EM, Steen PA, Thoresen M. Posthypoxic hypothermia in newborn piglets.Pediatr Res 41: 505–512, 1997.PubMedCrossRefGoogle Scholar
  69. 69.
    Yager J, Towfighi J, Vannucci RC. Influence of mild hypothermia on hypoxic-ischemic brain damage in the immature rat.Pediatr Res 34: 525–529, 1993.PubMedCrossRefGoogle Scholar
  70. 70.
    Sirimanne ES, Blumberg RM, Bossano D, Gunning M, Edwards AD, Gluckman PD, et al. The effect of prolonged modification of cerebral temperature on outcome after hypoxic-ischemic brain injury in the infant rat.Pediatr Res 39: 591–597, 1996.PubMedCrossRefGoogle Scholar
  71. 71.
    Thoresen M, Bagenholm R, Loberg EM, Apricena F, Kjellmer I. Posthypoxic cooling of neonatal rats provides protection against brain injury.Arch Dis Child Fetal Neonatal Ed 74: F3-F9, 1996.PubMedCrossRefGoogle Scholar
  72. 72.
    Laptook AR, Corbett RJ, Bums DK, Sterett R. A limited interval of delayed modest hypothermia for ischemic brain resuscitation is not beneficial in neonatal swine.Pediatr Res 46: 383–389, 1999.PubMedCrossRefGoogle Scholar
  73. 73.
    Shuaib A, Trulove D, Ijaz MS, Kanthan R, Kalra J. The effect of post-ischemic hypothermia following repetitive cerebral ischemia in gerbils.Neurosci Lett 186: 165–168, 1995.PubMedCrossRefGoogle Scholar
  74. 74.
    Busto R, Dietrich WD, Globus MY, Ginsberg MD. Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury.Neurosci Lett 101: 299–304, 1989.PubMedCrossRefGoogle Scholar
  75. 75.
    Bona E, Hagberg H, Loberg EM, Bagenholm R, Thoresen M. Protective effects of moderate hypothermia after neonatal hypoxia-ischemia: short- and long-term outcome.Pediatr Res 43: 738–745, 1998.PubMedCrossRefGoogle Scholar
  76. 76.
    Thoresen M, Penrice J, Lorek A, Cady EB, Wylezinska M, Kirkbride V, et al. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the new-born piglet.Pediatr Res 37: 667–670, 1995.PubMedCrossRefGoogle Scholar
  77. 77.
    Tooley JR, Satas S, Porter H, Silver IA, Thoresen M. Head cooling with mild systemic hypothermia in anesthetized piglets is neuroprotective.Ann Neurol 53: 65–72, 2003.PubMedCrossRefGoogle Scholar
  78. 78.
    Gunn AJ, Bennet L. Hypothermia in the management of hypoxic-ischemic encephalopathy.NeoReviews 3: e116-e122, 2002.CrossRefGoogle Scholar
  79. 79.
    Gunn AJ, Gunn TR, Gunning MI, Williams CE, Gluckman PD. Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep.Pediatrics 102: 1098–1106, 1998.PubMedCrossRefGoogle Scholar
  80. 80.
    Gunn AJ, Bennet L, Gunning MI, Gluckman PD, Gunn TR. Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep.Pediatr Res 46: 274–280. 1999.PubMedCrossRefGoogle Scholar
  81. 81.
    Gerrits LC, Battin MR, Bennet L, Gonzalez H, Gunn AJ. Epileptiform activity during rewarming from moderate cerebral hypothermia in the near-term fetal sheep.Pediatr Res 57: 342–6. 2005.PubMedCrossRefGoogle Scholar
  82. 82.
    Colboume F, Corbett D. Delayed postischemic hypothermia: a six month survival study using behavioral and histological assessments of neuroprotection.J Neurosci 15: 7250–7260, 1995.Google Scholar
  83. 83.
    Colbourne F, Li H, Buchan AM. Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats.J Cereb Blood Flow Metab 19: 742–749, 1999.PubMedCrossRefGoogle Scholar
  84. 84.
    Colboume F, Corbett D, Zhao Z, Yang J, Buchan AM. Prolonged but delayed postischemic hypothermia: a long-term outcome study in the rat middle cerebral artery occlusion model.J Cereb Blood Flow Metab 20: 1702–1708, 2000.CrossRefGoogle Scholar
  85. 85.
    Schubert A. Side effects of mild hypothermia.J Neurosurg Anesthesiol 7: 139–47, 1995.PubMedCrossRefGoogle Scholar
  86. 86.
    Weinrauch V, Safar P, Tisherman S, Kuboyama K, Radovsky A. Beneficial effect of mild hypothermia and detrimental effect of deep hypothermia after cardiac arrest in dogs.Stroke 23: 1454–62, 1992.PubMedCrossRefGoogle Scholar
  87. 87.
    Colbourne F, Auer RN, Sutherland GR. Characterization of postischemic behavioral deficits in gerbils with and without hypothermic neuroprotection.Brain Res 803: 69–78, 1998.PubMedCrossRefGoogle Scholar
  88. 88.
    Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.N Engl J Med 346: 557–563, 2002.PubMedCrossRefGoogle Scholar
  89. 89.
    The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.N Engl J Med 346: 549–556, 2002.CrossRefGoogle Scholar
  90. 90.
    Dietrich WD, Busto R, Alonso O, Globus MY, Ginsberg MD. Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats.J Cereb Blood Flow Metab 13: 541–549, 1993.PubMedCrossRefGoogle Scholar
  91. 91.
    Nurse S, Corbett D. Neuroprotection after several days of mild, drug-induced hypothermia.J Cereb Blood Flow Metab 16: 474–480, 1996.PubMedCrossRefGoogle Scholar
  92. 92.
    Coimbra C, Drake M, Boris-Moller F, Wieloch T. Long-lasting neuroprotective effect of postischemic hypothermia and treatment with an anti-inflammatory/antipyretic drug. Evidence for chronic encephalopathic processes following ischemia.Stroke 27: 1578–1585, 1996.PubMedCrossRefGoogle Scholar
  93. 93.
    Trescher WH, Ishiwa S, Johnston MV. Brief post-hypoxic-ischemic hypothermia markedly delays neonatal brain injury.Brain Dev 19: 326–338, 1997.PubMedCrossRefGoogle Scholar
  94. 94.
    Nedelcu J, Klein MA, Aguzzi A, Martin E. Resuscitative hypothermia protects the neonatal rat brain from hypoxic-ischemic injury.Brain Pathol 10: 61–71, 2000.PubMedCrossRefGoogle Scholar
  95. 95.
    Wagner BP, Nedelcu J, Martin E. Delayed postischemic hypothermia improves long-term behavioral outcome after cerebral hypoxia-ischemia in neonatal rats.Pediatr Res 51: 354–360, 2002.PubMedCrossRefGoogle Scholar
  96. 96.
    Corbett D, Hamilton M, Colboume F. Persistent neuroprotection with prolonged postischemic hypothermia in adult rats subjected to transient middle cerebral artery occlusion.Exp Neurol 163: 200–206, 2000.PubMedCrossRefGoogle Scholar
  97. 97.
    Colboume F, Sutherland G, Corbett D. Postischemic hypothermia. A critical appraisal with implications for clinical treatment.Mol Neurobiol 14: 171–201, 1997.CrossRefGoogle Scholar
  98. 98.
    Laptook AR, Corbett RJ, Sterett R, Garcia D, Tollefsbol G. Quantitative relationship between brain temperature and energy utilization rate measured in vivo using 31P and 1H magnetic resonance spectroscopy.Pediatr Res 38: 919–925, 1995.PubMedCrossRefGoogle Scholar
  99. 99.
    Erecinska M, Thoresen M, Silver IA. Effects of hypothermia on energy metabolism in Mammalian central nervous system.J Cereb Blood Flow Metab 23: 513–30, 2003.PubMedCrossRefGoogle Scholar
  100. 100.
    Bart RD, Takaoka S, Pearlstein RD, Dexter F, Warner DS. Interactions between hypothermia and the latency to ischemic depolarization: implications for neuroprotection.Anesthesiology 88: 1266–1273, 1998.PubMedCrossRefGoogle Scholar
  101. 101.
    Nakashima K, Todd MM. Effects of hypothermia on the rate of excitatory amino acid release after ischemic depolarization.Stroke 27: 913–918, 1996.PubMedCrossRefGoogle Scholar
  102. 102.
    Thoresen M, Satas S, Puka-Sundvall M, Whitelaw A, Hallstrom A, Loberg EM, et al. Post-hypoxic hypothermia reduces cerebro-cortical release of NO and excitotoxins.Neuroreport 8: 3359–3362, 1997.PubMedCrossRefGoogle Scholar
  103. 103.
    Lei B, Adachi N, Arai T. The effect of hypothermia on H2O2 production during ischemia and reperfusion: a microdialysis study in the gerbil hippocampus.Neurosci Lett 222: 91–94, 1997.PubMedCrossRefGoogle Scholar
  104. 104.
    Kristian T, Katsura K, Siesjo BK. The influence of moderate hypothermia on cellular calcium uptake in complete ischaemia: implications for the excitotoxic hypothesis.Acta Physiol Scand 146: 531–2, 1992.PubMedCrossRefGoogle Scholar
  105. 105.
    Bruno VM, Goldberg MP, Dugan LL, Giffard RG, Choi DW. Neuroprotective effect of hypothermia in cortical cultures exposed to oxygen-glucose deprivation or excitatory amino acids.J Neurochem 63: 1398–406, 1994.PubMedCrossRefGoogle Scholar
  106. 106.
    Xu RX, Nakamura T, Nagao S, Miyamoto O, Jin L, Toyoshima T, et al. Specific inhibition of apoptosis after cold-induced brain injury by moderate postinjury hypothermia.Neurosurgery 43: 107–114, 1998.PubMedCrossRefGoogle Scholar
  107. 107.
    Inamasu J, Suga S, Sato S, Horiguchi T, Akaji K, Mayanagi K, et al. Postischemic hypothermia attenuates apoptotic cell death in transient focal ischemia in rats.Acta Neurochir Suppl 76: 525–527, 2000.PubMedGoogle Scholar
  108. 108.
    Colboume F, Sutherland GR, Auer RN. Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia.J Neurosci 19: 4200–4210, 1999.Google Scholar
  109. 109.
    Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjo BK. Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation.J Cereb Blood Flow Metab 20: 1294–1300, 2000.PubMedCrossRefGoogle Scholar
  110. 110.
    Johnson MD, Kinoshita Y, Xiang H, Ghatan S, Morrison RS. Contribution of p53-dependent caspase activation to neuronal cell death declines with neuronal maturation.J Neurosci 19: 2996–3006, 1999.PubMedGoogle Scholar
  111. 111.
    Zhu C, Qiu L, Wang X, Hallin U, Cande C, Kroemer G, et al. Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain.J Neurochem 86: 306–17, 2003.PubMedCrossRefGoogle Scholar
  112. 112.
    Roelfsema V, Bennet L, George S, Wu D, Guan J, Veerman M, et al. The window of opportunity for cerebral hypothermia and white matter injury after cerebral ischemia in near-term fetal sheep.J Cereb Blood Flow Metab 24: 877–886, 2004.PubMedCrossRefGoogle Scholar
  113. 113.
    Bossenmeyer-Pourie C, Koziel V, Daval JL. Effects of hypothermia on hypoxia-induced apoptosis in cultured neurons from developing rat forebrain: comparison with preconditioning.Pediatr Res 47: 385–391, 2000.PubMedCrossRefGoogle Scholar
  114. 114.
    Si QS, Nakamura Y, Kataoka K. Hypothermic suppression of microglial activation in culture: inhibition of cell proliferation and production of nitric oxide and superoxide.Neuroscience 81: 223–229, 1997.PubMedCrossRefGoogle Scholar
  115. 115.
    Goss JR, Styren SD, Miller PD, Kochanek PM, Palmer AM, Marion DW, et al. Hypothermia attenuates the normal increase in interleukin 1 beta RNA and nerve growth factor following traumatic brain injury in the rat.J Neurotrauma 12: 159–167, 1995.PubMedCrossRefGoogle Scholar
  116. 116.
    Chatzipanteli K, Alonso OF, Kraydieh S, Dietrich WD. Importance of posttraumatic hypothermia and hyperthermia on the inflammatory response after fluid percussion brain injury: biochemical and immunocytochemical studies.J Cereb Blood Flow Metab 20: 531–542, 2000.PubMedCrossRefGoogle Scholar
  117. 117.
    Inamasu J, Suga S, Sato S, Horiguchi T, Akaji K, Mayanagi K, et al. Post-ischemic hypothermia delayed neutrophil accumulation and microglial activation following transient focal ischemia in rats.J Neuroimmunol. 109: 66–74, 2000.PubMedCrossRefGoogle Scholar
  118. 118.
    Levin S, Godukhin O. Developmental changes in hyperexcitability of CA1 pyramidal neurons induced by repeated brief episodes of hypoxia in the rat hippocampal slices.Neurosci Lett 377: 20–4. 2005.PubMedCrossRefGoogle Scholar
  119. 119.
    Zanelli SA, Numagami Y, McGowan JE, Mishra OP, Delivoria-Papadopoulos M. NMDA receptor-mediated calcium influx in cerebral cortical synaptosomes of the hypoxic guinea pig fetus.Neurochem Res 24: 437–46, 1999.PubMedCrossRefGoogle Scholar
  120. 120.
    Mitani A, Namba S, Ikemune K, Yanase H, Arai T, Kataoka K. Postischemic enhancements of N-methyl-D-aspartic acid (NMDA) and non-NMDA receptor-mediated responses in hippocampal CA1 pyramidal neurons.J Cereb Blood Flow Metab 18: 1088–98, 1998.PubMedCrossRefGoogle Scholar
  121. 121.
    Jensen FE, Wang C, Stafstrom CE, Liu Z, Geary C, Stevens MC. Acute and chronic increases in excitability in rat hippocampal slices after perinatal hypoxia In vivo.J Neurophysiol 79: 73–81, 1998.PubMedGoogle Scholar
  122. 122.
    Hossmann KA. Periinfarct depolarizations.Cerebrovasc Brain Metab Rev 8: 195–208, 1996.PubMedGoogle Scholar
  123. 123.
    Busch E, Gyngell ML, Eis M, Hoehn-Berlage M, Hossmann KA. Potassium-induced cortical spreading depressions during focal cerebral ischemia in rats: contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging.J Cereb Blood Flow Metab 16: 1090–9, 1996.PubMedCrossRefGoogle Scholar
  124. 124.
    Baldwin M, Frost LL. Effect of hypothermia on epileptiform activity in the primate temporal lobe.Science 124: 931–2, 1956.PubMedCrossRefGoogle Scholar
  125. 125.
    Karkar KM, Garcia PA, Bateman LM, Smyth MD, Barbare NM, Berger M. Focal cooling suppresses spontaneous epileptiform activity without changing the cortical motor threshold.Epilepsia 43: 932–935, 2002.PubMedCrossRefGoogle Scholar
  126. 126.
    Gunn AJ, Gluckman PD, Gunn TR. Selective head cooling in newborn infants after perinatal asphyxia: a safety study.Pediatrics 102: 885–892, 1998.PubMedCrossRefGoogle Scholar
  127. 127.
    Battin MR, Dezoete JA, Gunn TR, Gluckman PD, Gunn AJ. Neurodevelopmental outcome of infants treated with head cooling and mild hypothermia after perinatal asphyxia.Pediatrics 107: 480–484, 2001.PubMedCrossRefGoogle Scholar
  128. 128.
    Battin MR, Penrice J, Gunn TR, Gunn AJ. Treatment of term infants with head cooling and mild systemic hypothermia (35.0 degrees C and 34.5 degrees C) after perinatal asphyxia.Pediatrics 111: 244–251, 2003.PubMedCrossRefGoogle Scholar
  129. 129.
    Akisu M, Huseyinov A, Yalaz M, Cetin H, Kultursay N. Selective head cooling with hypothermia suppresses the generation of platelet-activating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia.Prostaglandins Leukot Essent Fatty Acids 69: 45–50, 2003.PubMedCrossRefGoogle Scholar
  130. 130.
    Shankaran S, Laptook A, Wright LL, Ehrenkranz RA, Donovan EF, Fanaroff AA, et al. Whole-body hypothermia for neonatal encephalopathy: animal observations as a basis for a randomized, controlled pilot study in term infants.Pediatrics 110: 377–385, 2002.PubMedCrossRefGoogle Scholar
  131. 131.
    Thoresen M, Whitelaw A. Cardiovascular changes during mild therapeutic hypothermia and rewarming in infants with hypoxic-ischaemic encephalopathy.Pediatrics 106: 92–99, 2000.PubMedCrossRefGoogle Scholar
  132. 132.
    Azzopardi D, Robertson NJ, Cowan FM, Rutherford MA, Rampling M, Edwards AD. Pilot study of treatment with whole body hypothermia for neonatal encephalopathy.Pediatrics 106: 684–694, 2000.PubMedCrossRefGoogle Scholar
  133. 133.
    Debillon T, Daoud P, Durand P, Cantagrel S, Jouvet P, Saizou C, et al. Whole-body cooling after perinatal asphyxia: a pilot study in term neonates.Dev Med Child Neurol 45: 17–23, 2003.PubMedCrossRefGoogle Scholar
  134. 134.
    Compagnoni G, Pogliani L, Lista G, Castoldi F, Fontana P, Mosca F. Hypothermia reduces neurological damage in asphyxiated newborn infants.Biol Neonate 82: 222–227, 2002.PubMedCrossRefGoogle Scholar
  135. 135.
    Zhou WH, Shao XM, Cao Y, Chen C, Zhang XD. Safety study of hypothermia for treatment of hypoxic-ischemic brain damage in term neonates.Acta Pharmacol Sin 23: 64–68, 2003.Google Scholar
  136. 136.
    Eicher DJ, Wagner CL, Katikaneni LP, Hulsey TC, Bass WT, Kaufman DA, et al. Moderate hypothermia in neonatal encephalopathy: Safety outcomes.Pediatr Neurol 32: 18–24, 2005.PubMedCrossRefGoogle Scholar
  137. 137.
    Eicher DJ, Wagner CL, Katikaneni LP, Hulsey TC, Bass WT, Kaufman DA, et al. Moderate hypothermia in neonatal encephalopathy: Efficacy outcomes.Pediatr Neurol 32: 11–7, 2005.PubMedCrossRefGoogle Scholar
  138. 138.
    Gluckman PD, Wyatt JS, Azzopardi D, Ballard D, Edwards AD, Fernere DM, et al. Selective head cooling with mild systemic hypothermia to improve neurodevelopmental outcome following neonatal encephalopathy.Lancet 365: 663–670, 2005.PubMedGoogle Scholar
  139. 139.
    Gunn AJ, Gluckman PD, Wyatt JS, Thoresen M, Edwards AD. Selective head cooling after neonatal encephalopathy.Lancet 365: 1619–1620, 2005.CrossRefGoogle Scholar
  140. 140.
    Kendrick JE, Turner KA. Carotid sinus depressor reflexes during hypothermia.Am J Physiol 207: 777–81, 1964.PubMedGoogle Scholar
  141. 141.
    Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy.N Engl J Med 353: 1574–84, 2005.PubMedCrossRefGoogle Scholar
  142. 142.
    Inder TE, Hunt RW, Morley CJ, Coleman L, Stewart M, Doyle LW, et al. Randomized trial of systemic hypothermia selectively protects the cortex on MRI in term hypoxic-ischemic encephalopathy.J Pediatr 145: 835–7, 2004.PubMedCrossRefGoogle Scholar
  143. 143.
    Rutherford MA, Azzopardi D, Whitelaw A, Cowan F, Renowden S, Edwards AD, et al. Mild hypothermia and the distribution of cerebral lesions in neonates with hypoxic-ischemic encephalopathy.Pediatrics 116: 1001–6, 2005.PubMedCrossRefGoogle Scholar
  144. 144.
    Westgate JA, Gunn AJ, Gunn TR. Antecedents of neonatal encephalopathy with fetal acidaemia at term.Br J Obstet Gynaecol 106: 774–782, 1999.PubMedCrossRefGoogle Scholar
  145. 145.
    Cowan F, Rutherford M, Groenendaal F, Eken P, Mercuri E, Bydder GM, et al. Origin and timing of brain lesions in term infants with neonatal encephalopathy.Lancet 361: 736–42, 2003.PubMedCrossRefGoogle Scholar
  146. 146.
    Geddes R, Vannucci RC, Vannucci SJ. Delayed cerebral atrophy following moderate hypoxia-ischemia in the immature rat.Dev Neurosci 23: 180–185, 2001.PubMedCrossRefGoogle Scholar
  147. 147.
    Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study.Arch Neurol 33: 696–705, 1976.PubMedCrossRefGoogle Scholar
  148. 148.
    Wass CT, Waggoner JR, Cable DG, Schaff HV, Schroeder DR, Lanier WL. Selective convective brain cooling during normothermic cardiopulmonary bypass in dogs.J Thorac Cardiovasc Surg 115: 1350–1357, 1998.PubMedCrossRefGoogle Scholar
  149. 149.
    Simbruner G, Haberl C, Harrison V, Linley L, Willeitner AE. Induced brain hypothermia in asphyxiated human newborn infants: a retrospective chart analysis of physiological and adverse effects.Intensive Care Med 25: 1111–1117, 1999.PubMedCrossRefGoogle Scholar
  150. 150.
    Laptook AR, Shalak L, Corbett RJ. Differences in brain temperature and cerebral blood flow during selective head versus whole-body cooling.Pediatrics 108: 1103–10, 2001.PubMedCrossRefGoogle Scholar
  151. 151.
    Thoresen M, Simmonds M, Satas S, Tooley J, Silver I. Effective selective head cooling during posthyoxic hypothermia in newborn piglets.Pediatr Res 49: 594–599, 2001.PubMedCrossRefGoogle Scholar
  152. 152.
    Tooley J, Satas S, Eagle R, Silver IA, Thoresen M. Significant selective head cooling can be maintained long-term after global hypoxia ischemia in newborn piglets.Pediatrics 109: 643–649, 2002.PubMedCrossRefGoogle Scholar
  153. 153.
    Tooley JR, Eagle RC, Satas S, Thoresen M. Significant head cooling can be achieved while maintaining normothermia in the newborn piglet.Arch Dis Child Fetal Neonatal Ed 90: F262–6. 2005.PubMedCrossRefGoogle Scholar
  154. 154.
    Iwata O, Thornton JS, Sellwood MW, Iwata S, Sakata Y, Noone MA, et al. Depth of delayed cooling alters neuroprotection pattern after hypoxia-ischemia.Ann Neurol 58: 75–87, 2005.PubMedCrossRefGoogle Scholar
  155. 155.
    Battin MR, Bennet L, Gunn AJ. Rebound seizures during rewarming.Pediatrics 114: 1369, 2004.PubMedCrossRefGoogle Scholar
  156. 156.
    Nakamura T, Miyamoto O, Sumitani K, Negi T, Itano T, Nagao S. Do rapid systemic changes of brain temperature have an influence on the brain?Acta Neurochir (Wien) 145: 301–7, 2003.CrossRefGoogle Scholar
  157. 157.
    Suehiro E, Povlishock JT. Exacerbation of traumatically induced axonal injury by rapid posthypothermic rewarming and attenuation of axonal change by cyclosporin A.J Neurosurg 94: 493–8. 2001.PubMedCrossRefGoogle Scholar
  158. 158.
    Ueda Y, Suehiro E, Wei EP, Kontos HA, Povlishock JT. Uncomplicated rapid posthypothermic rewarming alters cerebrovascular responsiveness.Stroke 35: 601–6, 2004.PubMedCrossRefGoogle Scholar
  159. 159.
    Gunn AJ. Cerebral hypothermia for prevention of brain injury following perinatal asphyxia.Curr Opin Pediatr 12: 111–115, 2000.PubMedCrossRefGoogle Scholar
  160. 160.
    Todd MM, Hindman BJ, Clarke WR, Tomer JC. Mild intraoperative hypothermia during surgery for intracranial aneurysm.N Engl J Med 352: 135–45, 2005.PubMedCrossRefGoogle Scholar
  161. 161.
    Satas S, Loberg EM, Porter H, Whitelaw A, Steen PA, Thoresen M. Effect of global hypoxia-ischaemia followed by 24 h of mild hypothermia on organ pathology and biochemistry in a newborn pig survival model.Biol Neonate 83: 146–56, 2003.PubMedCrossRefGoogle Scholar
  162. 162.
    Gordon CJ, Heath JE. Integration and central processing in temperature regulation.Annu Rev Physiol 48: 595–612:595-612, 1986.PubMedCrossRefGoogle Scholar
  163. 163.
    Gunn TR, Wilson NJ, Aftimos S, Gunn AJ. Brain hypothermia and QT interval.Pediatrics 103: 1079, 1999.PubMedCrossRefGoogle Scholar
  164. 164.
    Green EJ, Pazos AJ, Dietrich WD, McCabe PM, Schneiderman N, Lin B, et al. Combined postischemic hypothermia and delayed MK-801 treatment attenuates neurobehavioral deficits associated with transient global ischemia in rats.Brain Res 702: 145–152, 1995.PubMedCrossRefGoogle Scholar
  165. 165.
    Ikonomidou C, Mosinger JL, Olney JW. Hypothermia enhances protective effect of MK-801 against hypoxic/ischemic brain damage in infant rats.Brain Res 487: 184–7, 1989.PubMedCrossRefGoogle Scholar
  166. 166.
    Alkan T, Kahveci N, Buyukuysal L, Korfali E, Ozluk K. Neuroprotective effects of MK 801 and hypothermia used alone and in combination in hypoxic-ischemic brain injury in neonatal rats.Arch Physiol Biochem 109: 135–144, 2001.PubMedCrossRefGoogle Scholar
  167. 167.
    Ma D, Hossain M, Chow A, Arshad M, Battson RM, Sanders RD, et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia.Ann Neurol 58: 182–93, 2005.PubMedCrossRefGoogle Scholar
  168. 168.
    Thoresen M, Satas S, Loberg EM, Whitelaw A, Acolet D, Lindgren C, et al. Twenty-four hours of mild hypothermia in unsedated newborn pigs starting after a severe global hypoxic-ischemic insult is not neuroprotective.Pediatr Res 50: 405–411. 2001.PubMedCrossRefGoogle Scholar
  169. 169.
    Colboume F, Li H, Buchan AM, Clemens JA. Continuing postischemic neuronal death in CA1: influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats.Stroke 30: 662–668, 1999.CrossRefGoogle Scholar
  170. 170.
    Liu Y, Barks JD, Xu G, Silverstein FS. Topiramate extends the therapeutic window for hypothermia-mediated neuroprotection after stroke in neonatal rats.Stroke 35: 1460–5, 2004.PubMedCrossRefGoogle Scholar
  171. 171.
    Guan J, Gunn AJ, Sirimanne ES, Tuffin J, Gunning MI, Clark R, et al. The window of opportunity for neuronal rescue with insulin-like growth factor-1 after hypoxia-ischemia in rats is critically modulated by cerebral temperature during recovery.J Cereb Blood Flow Metab 20: 513–519, 2000.PubMedCrossRefGoogle Scholar
  172. 172.
    Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease.Trends Pharmacol Sci 11: 379–87, 1990.PubMedCrossRefGoogle Scholar
  173. 173.
    Bear MF, Kleinschmidt A, Gu QA, Singer W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist.J Neurosci 10: 909–25. 1990.PubMedGoogle Scholar
  174. 174.
    Brosnan-Watters G, Wozniak DF, Nardi A, Olney JW. Parallel recovery of MK-801-induced spatial learning impairment and neuronal injury in male mice.Pharmacol Biochem Behav 62: 111–22, 1999.PubMedCrossRefGoogle Scholar
  175. 175.
    Facchinetti F, Ciani E, Dall’Olio R, Virgili M, Contestabile A, Fonnum F. Structural, neurochemical and behavioural consequences of neonatal blockade of NMDA receptor through chronic treatment with CGP 39551 or MK-801.Brain Res Dev Brain Res 74: 219–24, 1993.PubMedCrossRefGoogle Scholar
  176. 176.
    Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain.Science 283: 70–4, 1999.PubMedCrossRefGoogle Scholar
  177. 177.
    Pohl D, Bittigau P, Ishimaru MJ, Stadthaus D, Hubner C, Olney JW, et al. N-Methyl-D-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain.Proc Natl Acad Sci U S A 96: 2508–13, 1999.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2006

Authors and Affiliations

  1. 1.Depts of Physiology and Paediatrics, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
  2. 2.St Michaels Hospital, Child Health, level DUniversity of BristolBristolUK

Personalised recommendations