, Volume 3, Issue 1, pp 97–105

Catechol-O-methyltransferase polymorphisms and some implications for cognitive therapeutics

  • Catherine M. Diaz-Asper
  • Daniel R. Weinberger
  • Terry E. Goldberg


Catechol-O-methyltransferase (COMT) is a gene involved in the degradation of dopamine and may both increase susceptibility to develop schizophrenia and affect neuronal functions involved in working memory. A common variant of the COMT gene (val108/158met) has been widely reported to affect prefrontally mediated working memory function, with the high-activity val allele associated with poorest performance across a number of tests sensitive to updating and target detection. Pharmacological manipulations of COMT val108/158met also have reliably produced alterations in cognitive function, in line with an inverted U function of prefrontal dopamine signaling. Furthermore, there is accumulating evidence that COMT val108/158met genotype may influence the cognitive response to antipsychotic treatment in schizophrenia patients, with met allele load predicting the greatest improvement with medication. Recently, other single-nucleotide polymorphisms (SNPs) across the COMT gene have emerged as possible risk alleles for schizophrenia, although little is known about whether they affect prefrontal cognition in a manner similar to COMT val108/158met. Preliminary evidence suggests a modest role for a SNP in the 5′ region of the gene on select tests of attention and target detection. Haplotype effects also may account for a modest percentage of the variance in test performance, and are an important area for future study.

Key Words

Catechol-O-methyltransferase COMT working memory executive function prefrontal cognition 


  1. 1.
    Goldberg TE, Green MF. Neurocognitive functioning in patients with schizophrenia: an overview. In: Psychopharmacology: the fifth generation of progress (Davis KL, ed). New York: Raven Press, 2002.Google Scholar
  2. 2.
    Weickert TW, Goldberg TE, Gold JM, Bigelow LB, Egan MF, Weinberger DR. Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 57: 907–913, 2000.PubMedCrossRefGoogle Scholar
  3. 3.
    Franke P, Maier W, Hain C, Klingler T. Wisconsin Card Sorting Test: an indicator of vulnerability to schizophrenia? Schizophr Res 6: 243–249, 1992.PubMedCrossRefGoogle Scholar
  4. 4.
    Yurgelun-Todd D, Kinney DK. Patterns of neuropsychological deficits that discriminate schizophrenic individuals from siblings and control subjects. J Neuropsychiatry Clin Neurosci 5: 294–300, 1993.PubMedGoogle Scholar
  5. 5.
    Faraone S, Seidman LJ, Kremen WS, Pepple JR, Lyons MJ, Tsuang MT. Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a diagnostic efficiency analysis. J Abnormal Psychol 104: 286–304, 1995.CrossRefGoogle Scholar
  6. 6.
    Goldberg TE, Torrey EF, Gold JM, Bigelow LB, Ragland RD, Taylor E, et al. Genetic risk of neuro psychological impairment in schizophrenia: a study of monozygotic twins discordant and concordant for the disorder. Schizophr Res 17: 77–84, 1995.PubMedCrossRefGoogle Scholar
  7. 7.
    Cannon TD, Huttunen MO, Lonnqvist J, Tuulio-Henriksson A, Pirkola T, Glahn D, et al. The inheritance of neuro psychological dysfunction in twins discordant for schizophrenia. Am J Hum Genet 67: 369–382, 2000.PubMedCrossRefGoogle Scholar
  8. 8.
    Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT Val108/158Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98: 6917–6922, 2001.PubMedCrossRefGoogle Scholar
  9. 9.
    Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10: 40–68, 2004.CrossRefGoogle Scholar
  10. 10.
    Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50: 825–844, 2001.PubMedCrossRefGoogle Scholar
  11. 11.
    Tenhunen J, Salminen M, Lundstr“m K, Kiviluoto T, Savolainen R, Ulmanen I. Genomic organization of the human catechol-O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem 223: 1049–1059, 1994.PubMedCrossRefGoogle Scholar
  12. 12.
    Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM, et al. Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function. Neuroscience 116: 127–137, 2003.PubMedCrossRefGoogle Scholar
  13. 13.
    Karoum F, Chrapusta S, Egan MF. 3-Methoxytryptamine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem 63: 972–979, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Sesack SR, Hawrylak VA, Matus C, Guido MA, Levey AI. Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J Neurosci 18: 2697–2708, 1998.PubMedGoogle Scholar
  15. 15.
    Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, et al. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95: 9991–9996, 1998.PubMedCrossRefGoogle Scholar
  16. 16.
    Huotari M, Gogos JA, Karayiorgou M, Koponen I, Forsberg M, Raasmaja A, et al. Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice. Eur J Neurosci 15: 246–256, 2002.PubMedCrossRefGoogle Scholar
  17. 17.
    Kneavel M, Gogos J, Karayiorgou K, Luine V. Interaction of COMT gene deletion and environment on cognition. Soc Neurosci Abstract 26: 1–2, 2000.Google Scholar
  18. 18.
    Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75: 807–821, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Weinshilboum RM, Otterness DM, Szumlanski CL. Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Tox 39: 19–52, 1999.CrossRefGoogle Scholar
  20. 20.
    Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY, et al. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry 57: 139–144, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Glatt SJ, Faraone SV, Tsuang MT. Association between a functional catechol-O-methyltransferase gene polymorphism and schizophrenia: meta-analyses of case-control and family-based studies. Am J Psychiatry 160: 469–476, 2003.PubMedCrossRefGoogle Scholar
  22. 22.
    Munafo MR, Bowes L, Clark TG, Flint J. Lack of association of the COMT (Val(158/108) Met) gene and schizophrenia: a meta-analysis of case-control studies. Mol Psychiatry 10: 765–770, 2005.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen X, Wang X, O’Neill AF, Walsh D, Kendler KS. Variants on the catechol-O-methyltransferase (COMT) gene are associated with schizophrenia in Irish high-density families. Mol Psychiatry 9: 962–967, 2004.PubMedCrossRefGoogle Scholar
  24. 24.
    Kunugi H, Vallada HP, Sham PC, Hoda F, Arranz MJ, Li T, et al. Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission disequilibrium study in multiply affected families. Psychiatr Genet 7: 97–101, 1997.PubMedCrossRefGoogle Scholar
  25. 25.
    Li T, Sham PC, Vallada H, Xie T, Tang X, Murray RM, et al. Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr Genet 6: 131–133, 1996.PubMedCrossRefGoogle Scholar
  26. 26.
    Bilder RM, Volavka J, Czobor P, Malhotra AK, Kennedy JL, Ni XQ, et al. Neurocognitive correlates of the COMT Val158Met polymorphism in chronic schizophrenia. Biol Psychiatry 52: 701–707, 2002.PubMedCrossRefGoogle Scholar
  27. 27.
    Gallinat J, Bajbouj M, Sander T, Schlattmann P, Xu K, Ferro EF, et al. Association of the G1947A COMT (Val108/158Met) gene polymorphism with prefrontal P300 during information processing. Biol Psychiatry 54: 40–48, 2003.PubMedCrossRefGoogle Scholar
  28. 28.
    Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS, et al. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch Gen Psychiatry 60: 889–896, 2003.PubMedCrossRefGoogle Scholar
  29. 29.
    Joober R, Gauthier J, Lal S, Bloom D, Lalonde P, Rouleau G, et al. Catechol-O-methyltransferase val158met gene variants associated with performance on the Wisconsin Card Sorting Test. Arch Gen Psychiatry 59: 662–663, 2002.PubMedCrossRefGoogle Scholar
  30. 30.
    Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D. A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159: 652–654, 2002.PubMedCrossRefGoogle Scholar
  31. 31.
    Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, et al. Catechol-O-methyltransferase val158met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 100: 6186–6191, 2003.PubMedCrossRefGoogle Scholar
  32. 32.
    Rosa A, Peralta V, Cuesta MJ, Zarzuela A, Serrano F, Martinez-Larrea A, et al. New evidence of association between COMT gene and prefrontal neurocognitive function in healthy individuals and from sibling pairs discordant for psychosis. Am J Psychiatry 161: 1110–1112, 2004.PubMedCrossRefGoogle Scholar
  33. 33.
    Winterer G, Coppola R, Goldberg TE, Egan MF, Jones DW, Sanchez CE, Weinberger DR. Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. Am J Psychiatry 161: 490–500, 2004.PubMedCrossRefGoogle Scholar
  34. 34.
    Diamond A, Briand L, Fossella J, Gehlbach L. Genetic and neurochemical modulation of prefrontal cognitive functions in children. Am J Psychiatry 161: 125–132, 2004.PubMedCrossRefGoogle Scholar
  35. 35.
    Diaz-Asper CM, Goldberg TE, Kolachana BS, Straub RE, Egan MF, Weinberger DR. Genetic variation in catechol-O-methyltransferase (COMT): effects on working memory function in schizophrenic patients and healthy controls. In preparation.Google Scholar
  36. 36.
    Blasi G, Mattay VS, Bertolino A, Elvevaag B, Callicott JH, Das S, et al. Effect of catechol-O-methyltransferase val158met genotype on attentional control. J Neurosci 25: 5038–5045, 2005.PubMedCrossRefGoogle Scholar
  37. 37.
    Crofts HS, Dalley JW, Collins P, Van Denderen JCM, Everitt BJ, Robbins TW, et al. Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cereb Cortex 11: 1015–1026, 2001.PubMedCrossRefGoogle Scholar
  38. 38.
    Eisenberg J, Mei-Tal G, Steinberg A, Tartakovsky E, Zohar A, Gritsenko I, et al. Haplotype relative risk study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD): association of the high-enzyme activity val allele with ADHD impulsive-hyperactive phenotype. Am J Med Genet 88: 497–502, 1999.PubMedCrossRefGoogle Scholar
  39. 39.
    Nieoullon A. Dopamine and the regulation of cognition and attention. Prog Neurobiol 67: 53–83, 2002.PubMedCrossRefGoogle Scholar
  40. 40.
    Jazbec S, Pantelis C, Weickert T, Robbins T, Weinberger D, Goldberg T. IDED performance in schizophrenia: impact of distraction and perseveration. In preparation.Google Scholar
  41. 41.
    Tsai SJ, Yu YW, Chen TJ, Chen JY, Liou YJ, Chen MC, et al. Association study of a functional catechol-O-methyltransferasegene polymorphism and cognitive function in healthy females. Neurosci Lett 338: 123–126, 2003.PubMedCrossRefGoogle Scholar
  42. 42.
    Stefanis NC, Van Os J, Avramopoulos D, Smyrnis N, Evdokimidis I, Hantoumi I, et al. Variation in catechol-O-methyltransferase val158met genotype associated with schizotypy but not cognition: a population study in 543 young men. Biol Psychiatry 56: 510–515, 2004.PubMedCrossRefGoogle Scholar
  43. 43.
    Ho BC, Wassink TH, O’Leary DS, Sheffield VC, Andreasen NC. Catechol-O-methyltransferase val(158)met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Mol Psychiatry 10: 287–298, 2005.CrossRefGoogle Scholar
  44. 44.
    Nolan KA, Bilder RM, Lachman HM, Volavka J. Catecholo-O-methyltransferase val158met polymorphism in schizophrenia: differential effects of val and met alleles on cognitive stability and flexibility. Am J Psychiatry 161: 359–361, 2004.PubMedCrossRefGoogle Scholar
  45. 45.
    Stefanis NC, van Os J, Avramopoulos D, Smyrnis N, Evdokimidis I, Stefanis CN. Effect of COMT val158met polymorphism on the Continuous Performance Test, Identical Pairs version: tuning rather than improving performance. Am J Psychiatry 162: 1752–1754, 2005.PubMedCrossRefGoogle Scholar
  46. 46.
    Goldman-Rakic PS. The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42: 707–711, 1998.PubMedCrossRefGoogle Scholar
  47. 47.
    Lidow MS, Koh PO, Arnsten AF. D1 dopamine receptor in the mouse prefrontal cortex: immunocytochemical and cognitive neuropharmacological analyses. Synapse 47: 101–108, 2003.PubMedCrossRefGoogle Scholar
  48. 48.
    Stahl SM. Finding what you are not looking for: strategies for developing novel treatments in psychiatry. NeuroRx 3: 7–9, 2006.CrossRefGoogle Scholar
  49. 49.
    Gasparini M, Fabrizio E, Bonifati V, Meco G. Cognitive improvement during Tolcapone treatment in Parkinson’s disease. J Neural Trans 104: 887–894, 1997.CrossRefGoogle Scholar
  50. 50.
    Khromova I, Rauhala P, Zolotov N, Mannisto PT. Tolcapone, an inhibitor of catechol O-methyltransferase, counteracts memory deficits caused by bilateral cholinotoxin lesions of the basal nuclei of Meynert. Neuroreport 6: 1219–1222, 1995.PubMedCrossRefGoogle Scholar
  51. 51.
    Liljequist R, Haapalinna A, Ahlander M, Li YH, Mannisto PT. Catechol O-methyltransferase inhibitor tolcapone has minor influence on performance in experimental memory models in rats. Behav Brain Res 82: 195–202, 1997.PubMedCrossRefGoogle Scholar
  52. 52.
    Ceravolo R, Piccini P, Bailey DL, Jorga KM, Bryson H, Brooks DJ. 18F-dopa PET evidence that tolcapone acts as a central COMT inhibitor in Parkinson’s disease. Synapse 43: 201–207, 2002.PubMedCrossRefGoogle Scholar
  53. 53.
    Da Prada M, Zurcher G, Kettler R, Colzi A. New therapeutic strategies in Parkinson’s disease: inhibition of MAO-B by Ro19-6327 and of COMT by Ro40-7592. New York: Plenum Press, 1991.Google Scholar
  54. 54.
    Zurcher G, Dingemanse J, Da Prada M. Ro-40-7592, a potent inhibitor of extracerebral and brain catechol-O-methyltransferase: preclinical and clinical findings. Rome: John Libbey S. R. L., 1991.Google Scholar
  55. 55.
    Apud JA, Mattay V, Chen J, Kolachana BS, Callicott JH, Rasetti R, et al. Tolcapone improves cognition and cortical information processing in normal human subjects. In preparation.Google Scholar
  56. 56.
    Blasi G, Bertolino A. Imaging genomics and response to treatment with antipsychotics in schizophrenia. NeuroRx 3: 117–130, 2006.PubMedCrossRefGoogle Scholar
  57. 57.
    Bertolino A, Caforio G, Blasi G, De Candia M, Latorre V, Petruzzella V, et al. Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 161: 1798–1805, 2004.PubMedCrossRefGoogle Scholar
  58. 58.
    Weickert TW, Goldberg TE, Mishara A, Apud JA, Kolachana BS, Egan MF, et al. COMT val108/158met genotype predicts working memory response to antipsychotic medications. Biol Psychiatry 56: 677–682, 2004.PubMedCrossRefGoogle Scholar
  59. 59.
    Kapurt S, Agid O, Mizrahi R, Li M. How antipsychotics work—from receptors to reality. NeuroRx 3: 000–000, 2006.Google Scholar
  60. 60.
    Bray NJ, Buckland PR, Williams NM, Williams HJ, Norton N, Owen MJ, et al. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 73: 152–161, 2003.PubMedCrossRefGoogle Scholar
  61. 61.
    DeMille MMC, Kidd JR, Ruggeri V, Palmatier MA, Goldman D, Odunsi A, et al. Population variation in linkage disequilibrium across the COMT gene considering promoter region and coding region variation. Hum Genet 111: 521–537, 2002.PubMedCrossRefGoogle Scholar
  62. 62.
    Palmatier MA, Pakstis AJ, Speed W, Paschou P, Goldman D, Odunsi A, et al. COMT haplotypes suggest P2 promoter region relevance for schizophrenia. Mol Psychiatry 9: 859–870, 2004.PubMedCrossRefGoogle Scholar
  63. 63.
    Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A, et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 71: 1296–1302, 2002.PubMedCrossRefGoogle Scholar
  64. 64.
    Li T, Ball D, Zhao J, Murray RM, Liu X, Sham PC, et al. Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Mol Psychiatry 5: 77–84, 2000.PubMedCrossRefGoogle Scholar
  65. 65.
    Chan RCK, Chen RYL, Chen EYH, Hui TCK, Cheung EFC, Cheung HK, et al. The differential clinical and neurocognitive profiles of COMT SNP rs165599 genotypes in schizophrenia. J Int Neuropsychol Soc 11: 202–204, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2006

Authors and Affiliations

  • Catherine M. Diaz-Asper
    • 1
  • Daniel R. Weinberger
    • 1
  • Terry E. Goldberg
    • 1
  1. 1.Clinical Brain Disorders Branch, National Institute of Mental HealthNational Institutes of HealthBethesda
  2. 2.Division of Psychiatry ResearchZucker Hillside HospitalGlen Oaks

Personalised recommendations