NeuroRX

, Volume 3, Issue 1, pp 22–41 | Cite as

Neural circuitry and neuroplasticity in mood disorders: Insights for novel therapeutic targets

  • Paul J. Carlson
  • Jaskaran B. Singh
  • Carlos A. Zarate
  • Wayne C. Drevets
  • Husseini K. Manji
Article

Summary

Major depressive disorder and bipolar disorder are severe mood disorders that affect the lives and functioning of millions each year. The majority of previous neurobiological research and standard pharmacotherapy regimens have approached these illnesses as purely neurochemical disorders, with particular focus on the monoaminergic neurotransmitter systems. Not altogether surprisingly, these treatments are inadequate for many individuals afflicted with these devastating illnesses. Recent advances in functional brain imaging have identified critical neural circuits involving the amygdala and other limbic structures, prefrontal cortical regions, thalamus, and basal ganglia that modulate emotional behavior and are disturbed in primary and secondary mood disorders. Growing evidence suggests that mechanisms of neural plasticity and cellular resilience, including impairments of neurotrophic signaling cascades as well as altered glutamatergic and glucocorticoid signaling, underlie the dysregulation in these circuits. The increasing ability to monitor and modulate activity in these circuits is beginning to yield greater insight into the neurobiological basis of mood disorders. Modulation of dysregulated activity in these affective circuits via pharmacological agents that enhance neuronal resilience and plasticity, and possibly via emerging nonpharmacologic, circuitry-based modalities (for example, deep brain stimulation, magnetic stimulation, or vagus nerve stimulation) offers promising targets for novel experimental therapeutics in the treatment of mood disorders.

Key Words

Affective circuitry bipolar disorder brain imaging major depressive disorder functional imaging therapeutics plasticity 

References

  1. 1.
    World Health Organization. Chapter 2. Burden of Mental and Behavioral Disorders. In the WHO Report 2001: Mental Health, New Understandings, New Hope. http://www.who.int/whr/2001/en/whr01_ch2_en.pdf. 19–34, 2001.Google Scholar
  2. 2.
    Fagiolini A, Kupfer DJ, Masalehdan A, Scott JA, Houck PR, Frank E. Functional impairment in the remission phase of bipolar disorder. Bipolar Disord 7: 281–285, 2005.PubMedCrossRefGoogle Scholar
  3. 3.
    Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349: 1436–1442, 1997.PubMedCrossRefGoogle Scholar
  4. 4.
    Revicki DA, Matza LS, Flood E, Lloyd A. Bipolar disorder and health-related quality of life: review of burden of disease and clinical trials. Pharmacoeconomics 23: 583–594, 2005.PubMedCrossRefGoogle Scholar
  5. 5.
    Tohen M, Zarate ZA Jr, Hennen J, et al. The McLean-Harvard First-Episode Mania Study: prediction of recovery and first recurrence. Am J Psychiatry 160: 2099–2107, 2003.PubMedCrossRefGoogle Scholar
  6. 6.
    Ciechanowski PS, Katon WJ, Russo JE. Depression and diabetes: impact of depressive symptoms on adherence, function, and costs. Arch Intern Med 160: 3278–3285, 2000.PubMedCrossRefGoogle Scholar
  7. 7.
    Kupfer D. The increasing medical burden in bipolar disorder. JAMA 293: 2528–2530, 2005.PubMedCrossRefGoogle Scholar
  8. 8.
    Michelson D, Stratakis C, Hill L, et al. Bone mineral density in women with depression. N Engl J Med 335: 1176–1181, 1996.PubMedCrossRefGoogle Scholar
  9. 9.
    Musselman DL, Evans DL, Nemeroff CB. The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch Gen Psychiatry 55: 580–592, 1998.PubMedCrossRefGoogle Scholar
  10. 10.
    Drevets W. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11: 240–249, 2001.PubMedCrossRefGoogle Scholar
  11. 11.
    Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 34: 13–25, 2002.PubMedCrossRefGoogle Scholar
  12. 12.
    Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry 48: 813–829, 2000.PubMedCrossRefGoogle Scholar
  13. 13.
    Blasi G, Bertolino A. Imaging genomics and response to treatment with antipsychotics in schizophrenia. NeuroRx 3: 117–130, 2006.PubMedCrossRefGoogle Scholar
  14. 14.
    Winokur G. The development and validity of familial subtypes in primary unipolar depression. Pharmacopsychiatry 15: 142–146, 1982.CrossRefGoogle Scholar
  15. 15.
    Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME. Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 71: 431–447, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Drevets WC, Spitznagel E, Raichle ME. Functional anatomical differences between major depressive subtypes. J Cereb Blood Flow Metab 15: S93, 1995.Google Scholar
  17. 17.
    Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci 12: 3628–3641, 1992.PubMedGoogle Scholar
  18. 18.
    Wu J, Gillin JC, Buchsbaum MS, Hershey T, Johnson JC, Bunney WE Jr. Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry 149: 538–543, 1992.PubMedGoogle Scholar
  19. 19.
    Drevets WC, Botteron K. Neuroimaging in psychiatry. In: Adult psychiatry (Guze SB, ed), pp 53–81. St. Louis: Mosby, 1997.Google Scholar
  20. 20.
    Abercrombie HC, Larson CL, Ward RT, Schaefer SM, Holden JE, Perlman SB, et al. Metabolic rate in the amygdala predicts negative affect and depression severity in depressed patients: an FDG-PET study. Neuroimage 3: S217, 1996.CrossRefGoogle Scholar
  21. 21.
    Bremner JD, Innis RB, Salomon RM, Staib LH, Ng CK, Miller HL, et al. Positron emission tomography measurement of cerebral metabolic correlates of tryptophan depletion-induced dperessive relapse. Arch Gen Psychiatry 54: 346–374, 1997.Google Scholar
  22. 22.
    Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Mathews VP, Kalnin A, Lowe MJ. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry 57: 1079–1088, 2005.PubMedCrossRefGoogle Scholar
  23. 23.
    Haldane M, Frangou S. New insights help define the pathophysiology of bipolar affective disorder: neuroimaging and neuropathology findings. Prog Neuropsychopharm Biol Psychiatry 28: 943–960, 2004.CrossRefGoogle Scholar
  24. 24.
    Surguladze S, Brammer MJ, Keedwell P, Giampietro V, Young AW, Travis MJ, Williams SC, Phillips ML. A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biol Psychiatry 57: 201–209, 2005.PubMedCrossRefGoogle Scholar
  25. 25.
    Hariri AR, Drabant EM, Munoz KE, Kolachana BS, Mattay VS, Egan MF, Weinberger DR. A susceptibility gene for affective disorders and the response of the human amygdala. Arch Gen Psychiatry 62: 146–152, 2005.PubMedCrossRefGoogle Scholar
  26. 26.
    Heinz A, Braus DF, Smolka MN, Wrase J, Puls I, Hermann D, Klein S, Grusser SM, Flor H, Schumann G, Mann K, Buchel C. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat Neurosci 8: 20–21, 2005.PubMedCrossRefGoogle Scholar
  27. 27.
    Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8: 828–834, 2005.PubMedCrossRefGoogle Scholar
  28. 28.
    Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW. Associative processes in addiction and reward. The role of amygdala-ventral striatum subsystems. Ann NY Acad Sci 877: 412–438, 1999.PubMedCrossRefGoogle Scholar
  29. 29.
    Cahill L, Weinberger NM, Roozendaal B, McGaugh JL. Is the amygdala a locus of “conditioned fear”? Some questions and caveats. Neuron 23: 227–228, 1999.PubMedCrossRefGoogle Scholar
  30. 30.
    Davis M. Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 44: 1239–1247, 1998.PubMedCrossRefGoogle Scholar
  31. 31.
    Ledoux J. Emotion circuits in the brain. Annu Rev Neurosci 23: 155–184, 2000.PubMedCrossRefGoogle Scholar
  32. 32.
    Baxter LR, Phelps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE. Local cerebral glucose metabolic rates in obsessive-compulsive disorder—a comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry 44: 211–218, 1987.PubMedCrossRefGoogle Scholar
  33. 33.
    Biver F, Goldman S, Delvenne V, Luxen A, DeMaertelaer V, Hubain P, et al. Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry 36: 381–388, 1994.PubMedCrossRefGoogle Scholar
  34. 34.
    Cohen RM, Gross M, Nordahl TE, Semple WE, Oren DA, Rosenthal N. Preliminary data on the metabolic brain pattern of patients with winter seasonal affective disorder. Arch Gen Psychiatry 49: 545–552, 1992.PubMedCrossRefGoogle Scholar
  35. 35.
    Ebert D, Feistel H, Barocka A. Effects of sleep deprivation on the limbic system and the frontal lobes in affective disorders: a study with Tc-99m-HMPAO SPECT. Psychiatry Res 40: 247–251, 1991.PubMedCrossRefGoogle Scholar
  36. 36.
    Drevets WC, Raichle ME. Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: implications for interactions between emotion and cognition. Cogn Emotion 12: 353–385, 1998.CrossRefGoogle Scholar
  37. 37.
    Brody AL, Saxena S, Silverman DHS, Alborzian S, Fairbanks LA, Phelps ME, et al. Brain metabolic changes in major depressive disorder from pre- to post-treatment with paroxetine. Psychiatry Res Neuroimaging 91: 127–139, 1999.CrossRefGoogle Scholar
  38. 38.
    Mayberg HS, Liotti M, Brannan SK, McGinnis BS, Mahurin RK, Jerabek PA, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156: 675–682, 1999.PubMedGoogle Scholar
  39. 39.
    Nobler MS, Sackeim HA, Prohovnik I, Moeller JR, Mukherjee S, Schnur DB, et al. Regional cerebral BF in mood disorders, III. Treatment and clinical response. Arch Gen Psychiatry 51: 884–897, 1994.PubMedCrossRefGoogle Scholar
  40. 40.
    Carmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in Macaque monkeys. J Comp Neurol 363: 615–641, 1995.PubMedCrossRefGoogle Scholar
  41. 41.
    Mogenson GJ, Brudzynski SM, Wu M, Yang CR, Yim CCY. From motivation to action: a review of dopaminergic regulation of limbic-nucleus accumbens-ventral pallidum-pediculopontine nucleus circuitries involved in limbic-motor integration. In: Limbic motor circuits and neuropsychiatry (Kalivas PW, Barnes CD, eds), pp 193–236. London: CRC Press, 1993.Google Scholar
  42. 42.
    Price JL. Networks within the orbital and medial prefrontal cortex. Neurocase 5: 231–241, 1999.CrossRefGoogle Scholar
  43. 43.
    Price JL, Carmichael ST, Drevets WC. Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? In: Progress in brain research: the emotional motor system (Holstege G, Bandler R, Saper CB, eds) 107: 523–536. Amsterdam: Elsevier, 1996.CrossRefGoogle Scholar
  44. 44.
    Rolls E. A theory of emotion and consciousness and its application to understanding the neural basis of emotion. In: The cognitive neurosciences (Gazzaniga MS, ed), pp 1091–1106. Cambridge: MIT Press, 1995.Google Scholar
  45. 45.
    Sullivan RM, Gratton A. Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J Neurosci 19: 2834–2840, 1999.PubMedGoogle Scholar
  46. 46.
    Bechara A, Dasmasio H, Tranel D, Anderson SW. Dissociation of working memory from decision-making within the human prefrontal cortex. J Neurosci 18: 428–437, 1998.PubMedGoogle Scholar
  47. 47.
    Elliott R, Dolan RJ, Frith CD. Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10: 308–317, 2000.PubMedCrossRefGoogle Scholar
  48. 48.
    Iversen SD, Mishkin M. Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp Brain Res 11: 376–386, 1970.PubMedCrossRefGoogle Scholar
  49. 49.
    Sortres-Bayon F, Bush DE, LeDoux JE. Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. LearnMem 11: 525–535, 2004.Google Scholar
  50. 50.
    Buchsbaum MS, Wu J, Siegel BV, Hackett E, Trenary M, Abel L, Reynolds C. Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry 41: 15–22, 1997.PubMedCrossRefGoogle Scholar
  51. 51.
    Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M, Raichle ME. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386: 824–827, 1997.PubMedCrossRefGoogle Scholar
  52. 52.
    Kegeles LS, Malone KM, Slifstein M, Anjilvel S, Xanthopoulos C, Campell M, et al. Response of cortical metabolic deficits to serotonergic challenges in mood disorders. Biol Psychiatry 45:76S, 1999.CrossRefGoogle Scholar
  53. 53.
    Hirayasu Y, Shenton ME, Salisbury DF, Kwon JS, Wible CG, Fischer LA, et al. Subgenual cingulate cortex volume in first episode psychosis. Am J Psychiatry 156: 1091–1093, 1999.PubMedGoogle Scholar
  54. 54.
    Drevets WC, Gadde KM, Krishnan R. Neuroimaging studies of depression. In: Neurobiology of mental illness (Charney DS, Nestler EJ, Bunney BJ, eds), pp 394–418. New York: Oxford University Press, 1999.Google Scholar
  55. 55.
    Drevets WC. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res 126: 413–431, 2000.PubMedCrossRefGoogle Scholar
  56. 56.
    Drevets WC, Videen TO, Snyder AZ, MacLeod AK, Raichle ME. Regional cerebral blood flow changes during anticipatory anxiety. Abstr Soc Neurosci 20: 368, 1994.Google Scholar
  57. 57.
    Frysztak RJ, Neafsey EJ. The effect of medial frontal cortex lesions on cardiovascular conditioned emotional responses in the rat. Brain Res 643: 181–193, 1994.PubMedCrossRefGoogle Scholar
  58. 58.
    Baxter LR, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46: 243–250, 1989.PubMedCrossRefGoogle Scholar
  59. 59.
    Drevets WC. Prefrontal cortical-amygdalar metabolism in major depression. Ann NY Acad Sci 877: 614–637, 1999.PubMedCrossRefGoogle Scholar
  60. 60.
    Ring HA, Bench CJ, Trimble MR, Brooks DJ, Frackowiak RSJ, Dolan RJ. Depression in Parkinson’s disease: a positron emission study. Br J Psychiatry 165: 333–339, 1994.PubMedCrossRefGoogle Scholar
  61. 61.
    Goethals I, Audenaert K, Jacobs F, Van de Wiele C, Ham H, Pyck H, Vandierendonck A, Van Heeringen C, Dierckx R. Blunted prefrontal perfusion in depressed patients performing the Tower of London task. Psychiatry Res 139: 31–40, 2005.PubMedCrossRefGoogle Scholar
  62. 62.
    Bench CJ, Frackowiak RS, Dolan RJ. Changes in regional cerebral blood flow on recovery from depression. Psychol Med 25: 247–251, 1995.PubMedCrossRefGoogle Scholar
  63. 63.
    Apud JA. The pharmocogenomics of the dorsolateral prefrontal cortex: a new tool for the development of “target-oriented” cognitive enhancing drugs. NeuroRx 3: 106–116, 2006.PubMedCrossRefGoogle Scholar
  64. 64.
    Hooley JM, Gruber SA, Scott LA, Hiller JB, Yurgelun-Todd DA. Activation in dorsolateral prefrontal cortex in response to maternal criticism and praise in recovered depressed and healthy control participants. Biol Psychiatry 57: 809–812, 2005.PubMedCrossRefGoogle Scholar
  65. 65.
    Carlson PJ, Thase M, Bogers W, Kupfer DJ, Drevets WC. Medial thalamic metabolism is increased in depression, and decreases with treatment. Neuroimage 26: S28, 2005.Google Scholar
  66. 66.
    Drevets W. PET and the functional anatomy of major depression. In: Emotion, memory and behavior-study of human and nonhuman primates (Nakajima T, Ono T, eds), pp 43–62. Tokyo: Japan Scientific Societies Press, 1995.Google Scholar
  67. 67.
    Germain A, Nofzinger EA, Kupfer DJ, Buysse DJ. Neurobiology of non-REM sleep in depression: further evidence for hypofrontality and thalamic dysregulation. Am J Psychiatry 161: 1856–1863, 2004.PubMedCrossRefGoogle Scholar
  68. 68.
    Keedwell PA, Andrew C, Williams SCR, Brammer MJ, Phillips ML. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 58: 843–853, 2005.PubMedCrossRefGoogle Scholar
  69. 69.
    Blumberg HP, Stern E, Martinez D, Ricketts S, de Asis J, White T, et al. Increased anterior cingulate and caudate activity in bipolar mania. Biol Psychiatry 48: 1045–1052, 2000.PubMedCrossRefGoogle Scholar
  70. 70.
    Davidson RJ, Irwin W, Anderle MJ, Kalin NH. The neural substrates of affective processing in depressed patients treated with venlafaxine. Am J Psychiatry 160: 64–75, 2003.PubMedCrossRefGoogle Scholar
  71. 71.
    Brambilla P, Nicoletti M, Harenski K, Sassi RB, Mallinger AG, Frank E, et al. Anatomical MRI study of subgenual prefrontal cortex in bipolar and unipolar subjects. Neuropsychopharmacology 27: 792–799, 2002.PubMedCrossRefGoogle Scholar
  72. 72.
    Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, et al. Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 51: 273–279, 2002.PubMedCrossRefGoogle Scholar
  73. 73.
    Fossati P, Radtchenko A, Boyer P. Neuroplasticity: from MRI to depressive symptoms. Eur Neuropsychopharmacol 14: S503-S510, 2004.PubMedCrossRefGoogle Scholar
  74. 74.
    Kanner A. Structural MRI changes of the brain in depression. Clin EEG Neurosci 35: 46–52, 2004.PubMedGoogle Scholar
  75. 75.
    Lacerda ALT, Keshavan MS, Hardan AY, Yorbik O, Brambilla P, Sassi RB, Nicoletti M, Mallinger AG, Frank E, Kupfer DJ, Soares JC. Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biol Psychiatry 55: 353–358, 2004.PubMedCrossRefGoogle Scholar
  76. 76.
    Dickstein DP, Milham MP, Nugent AC, Drevets WC, Charney DS, Pine DS, Leibenluft E. Frontotemporal alterations in pediatric bipolar disorder. Arch Gen Psychiatry 62: 734–741, 2005.PubMedCrossRefGoogle Scholar
  77. 77.
    Rosso IM, Cintron CM, Steingard RJ, Renshaw PF, Young AD, Yurgelun-Todd DA. Amygdala and hippocampus volumes in pediatric major depression. Biol Psychiatry 57: 21–26, 2005.PubMedCrossRefGoogle Scholar
  78. 78.
    Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58: 545–553, 2001.PubMedCrossRefGoogle Scholar
  79. 79.
    Manji HK, Duman RS. Impairments of neuroplasticity and cellular resilience in severe mood disorder: implications for the development of novel therapeutics. Psychopharmacol Bull 35: 5–49, 2001.PubMedGoogle Scholar
  80. 80.
    Rajkowska G. Cell pathology in bipolar disorder. Bipolar Disord 4: 105–116, 2002.PubMedCrossRefGoogle Scholar
  81. 81.
    Coyle JT, Schwarcz R. Mind glue: implications of glial cell biology for psychiatry. Arch Gen Psychiatry 57: 90–93, 2000.PubMedCrossRefGoogle Scholar
  82. 82.
    Haydon P. GLIA: listening and talking to the synapse. Nat Rev Neurosci 2: 185–193, 2001.PubMedCrossRefGoogle Scholar
  83. 83.
    Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95: 13290–13295, 1998.PubMedCrossRefGoogle Scholar
  84. 84.
    Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48: 756–777, 2000.CrossRefGoogle Scholar
  85. 85.
    Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45: 1085–1098, 1999.PubMedCrossRefGoogle Scholar
  86. 86.
    Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. Control of synapse number by glia. Science 291: 657–661, 2001.PubMedCrossRefGoogle Scholar
  87. 87.
    Price JL. Comparative aspects of amygdala connectivity. Ann NY Acad Sci 985: 50–58, 2003.PubMedCrossRefGoogle Scholar
  88. 88.
    Blumberg HP, Kaufman J, Martin A, Charney DS, Krystal JH, Peterson BS. Significance of adolescent neurodevelopment for the neural circuitry of bipolar disorder. Ann NY Acad Sci 1021: 376–383, 2004.PubMedCrossRefGoogle Scholar
  89. 89.
    Blumberg HP, Martin A, Kaufman J, Leung HC, Skudlarski P, Lacadie CM, et al. Frontostriatal abnormalities in adolescents with bipolar disorder: preliminary observations from function MRI. Am J Psychiatry 160: 1345–1347, 2003.PubMedCrossRefGoogle Scholar
  90. 90.
    Canli T, Sivers H, Thomason ME, Whitfiiled-Gabrieli S, Gabrieli JD, Gotlib IH. Brain activation to emotional words in depressed vs. healthy subjects. Neuroreport 15: 2585–2588, 2004.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen CH, Lennox B, Jacob R, Calder A, Lupson V, Bisbrown-Chippendale R, Suckling J, Bullmore E. Explicit and implicit facial affect recognition in manic and depressed states of bipolar disorder: a functional magnetic resonance imaging study. Biol Psychiatry 59: 31–39, 2006.PubMedCrossRefGoogle Scholar
  92. 92.
    Irwin W, Anderele MJ, Abercrombie HC, Schaefer SM, Kalin NH, Davidson RJ. Amygdalar interhemispheric functional connectivity differs between the non-depressed and depressed human brain. Neuroimage 21: 674–686, 2004.PubMedCrossRefGoogle Scholar
  93. 93.
    Kumari V, Mitterschiffthaler MT, Teasdale JD, Malhi GS, Brown RG, Giampietro V, Brammer MJ, Poon L, Simmons A, Williams SC, Checkley SA, Sharma T. Neural abnormalities during cognitive generation of affect in treatment-resistant depression. Biol Psychiatry 54: 777–791, 2003.PubMedCrossRefGoogle Scholar
  94. 94.
    Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C, Frangou S, Ecker C, Phillips ML. Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 55: 578–587, 2004.PubMedCrossRefGoogle Scholar
  95. 95.
    Malhi GS, Lagopoulos J, Ward PB, Kumari V, Mitchell PB, Parker GB, Ivanovski B, Sachdev P. Cognitive generation of affect in bipolar depression: an fMRI study. Eur J Neurosci 19: 741–754, 2004.PubMedCrossRefGoogle Scholar
  96. 96.
    Milak MS, Parsey RV, Keilp J, Oquendo MA, Malone KM, Mann JJ. Neuroanatomic correlates of psychopathologic components of major depressive disorder. Arch Gen Psychiatry 62: 397–408, 2005.PubMedCrossRefGoogle Scholar
  97. 97.
    Folstein SE, Peyser CE, Starkstein SE, Folstein MF. Subcortical triad of Huntington’s disease—a model for a neuropathology of depression, dementia, and dyskinesia. In: Psychopathology and the brain (Carrol BJ, Barrett JE, eds), pp 65–75. New York: Raven Press, 1991.Google Scholar
  98. 98.
    Mayeux R. Depression and dementia in Parkinson’s disease. In: Movement disorders (Marsden CO, Fahn S, eds), pp 75–95. London: Butterworth, 1982.Google Scholar
  99. 99.
    Starkstein SE, Robinson RG. Affective disorders and cerebral vascular disease. Br J Psychiatry 174: 170–182, 1989.CrossRefGoogle Scholar
  100. 100.
    Ballantine HT, Bouckoms AJ, Thomas EK, Giriunas IE. Treatment of psychiatric illness by stereotactic cingulotomy. Biol Psychiatry 22: 807–819, 1987.PubMedCrossRefGoogle Scholar
  101. 101.
    Corsellis J, Jack AB. Neuropathological observations on yttrium implants and on undercutting in the orbito-frontal areas of the brain. In: Surgical approaches in psychiatry (Laitinen LV, Livingston KE, eds), pp 90–95. Lancaster, England: Medical & Technical Publishing Co., 1973.Google Scholar
  102. 102.
    Knight G. Stereotactic tractotomy in the surgical treatment of mental illness. J Neurol Neurosurg Psychiatry 28: 30, 1965.CrossRefGoogle Scholar
  103. 103.
    Nauta WJH, Domesick V. Afferent and efferent relationships of the basal ganglia. In: Function of the basal ganglia, CIBA Foundation Symposium (Evered D, O’Connor M eds) 107: 3–29, 1984.Google Scholar
  104. 104.
    Newcombe R. The lesion in stereotactic subcaudate tractotomy. Br J Psychiatry 126: 478, 1975.PubMedCrossRefGoogle Scholar
  105. 105.
    Nicolaidis S. Depression and neurosurgery: past, present, and future. Metab Clin Exp 54: 28–32, 2005.PubMedCrossRefGoogle Scholar
  106. 106.
    Velasco F, Velasco M, Jimenez F, Velasco AL, Salin-Pascual R. Neurobiological background for performing surgical intervention in the inferior thalamic peduncle for treatment of major depression disorders. Neurosurgery 57: 439–448, 2005.PubMedCrossRefGoogle Scholar
  107. 107.
    Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, Mathews VP, Kalnin A, Lowe MJ. Antidepressant effect on connectivity of the mood-regulating circuit: an fMRI study. Neuropsychopharmacology 30: 1334–1344, 2005.PubMedGoogle Scholar
  108. 108.
    Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J, Andrew CM, Pich EM, Williams PM, Reed LJ, Mitterschiffthaler MT, Suckling J, Bullmore ET. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry 61: 877–889, 2004.PubMedCrossRefGoogle Scholar
  109. 109.
    Little JT, Ketter TA, Kimbrell TA, Dunn RT, Benson BE, Willis MW, Luckenbaugh DA, Post RM. Bupropion and venlafaxine responders differ in pretreatment regional cerebral metabolism in unipolar depression. Biol Psychiatry 57: 220–228, 2005.PubMedCrossRefGoogle Scholar
  110. 110.
    Zarate CA Jr, Quiroz JA, Singh JB, Quiroz JA, Luckenbaugh DA, Denicoff KD, Charney DS, Manji HK. Pramipexole for bipolar II depression: a placebo-controlled proof of concept study. Biol Psychiatry 56: 54–60, 2004.PubMedCrossRefGoogle Scholar
  111. 111.
    Goldberg JF, Burdick KE, Endick CJ. Preliminary randomized, double-blind, placebo-controlled trial of pramipexole added to mood stabilizers for treatment-resistant bipolar depression. Am J Psychiatry 161: 564–566, 2004.PubMedCrossRefGoogle Scholar
  112. 112.
    Zarate CA Jr. Cerebral metabolic changes in bipolar depressed patients treated with the D2/D3 receptor agonist pramipexole. Program of the 6th International Conference on Bipolar Disorders, Pittsburgh, PA, 2005.Google Scholar
  113. 113.
    Sackeim HA, Prudic J, Devanand DP, et al. Effects of stimulus intensity and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy. N Engl J Med 328: 839–846, 1993.PubMedCrossRefGoogle Scholar
  114. 114.
    Nobler MS, Oquendo MA, Kegeles LS, et al. Decreased regional brain metabolism after ECT. Am J Psychiatry 158: 305–308, 2001.PubMedCrossRefGoogle Scholar
  115. 115.
    Brody AL, Saxena S, Stoessel P, Gillies LA, Fairbanks LA, Alborzian S, Phelps ME, Huang SC, Wu HM, Ho ML, Ho MK, Au SC, Maidment K, Baxter LR. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch Gen Psychiatry 58: 631–640, 2001.PubMedCrossRefGoogle Scholar
  116. 116.
    Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S, Mayberg H. Modulation of cortical-limbic pathways in major depression. Arch Gen Psychiatry 61: 34–41, 2004.PubMedCrossRefGoogle Scholar
  117. 117.
    Lisanby SH, Luber B, Schlaepfer TE, Sackeim HA. Safety and feasibility of magnetic seizure therapy (MST) in major depression: randomized within-subject comparison with electroconvulsive therapy. Neuropsychopharmacology 28: 1852–1865, 2003.PubMedCrossRefGoogle Scholar
  118. 118.
    George MS, Nahas Z, Li X, Kozel FA, Anderson B, Yamanaka K, Chae JH, Foust MJ. Novel treatment of mood disorders based on brain circuitry (ECT, MST, TMS, VNS, DBS). Semin Clin Neuropsychiatry 7: 293–304, 2002.PubMedCrossRefGoogle Scholar
  119. 119.
    Avery DH, Holtzheimer PE, Fawaz W, Russo J, Neumaier J, Dunner DL, Haynor DR, Claypoole KH, Wajdik C, Roy-Byrne P. A controlled study of repetitive transcranial magnetic stimulation in medication-resistant major depression. Biol Psychiatry, in press.Google Scholar
  120. 120.
    Sapolsky R. Is impaired neurogenesis relevant to the affective symptoms of depression? Biol Psychiatry 56: 137–139, 2004.PubMedCrossRefGoogle Scholar
  121. 121.
    Chae JH, Nahas Z, Lomarev M, Denslow S, Lorberbaum JP, Bohning DE, George MS. A review of functional neuroimaging studies of vagus nerve stimulation (VNS). J Psychiatr Res 37: 443–455, 2003.PubMedCrossRefGoogle Scholar
  122. 122.
    Narayanan JT, Watts R, Haddad N, Labar DR, Mark Li P, Filippi CG. Cerebral activation during vagus nerve stimulation: a functional MR study. Epilepsia 43: 1509–1514, 2002.PubMedCrossRefGoogle Scholar
  123. 123.
    Rush A, George MS, Sackeim HA, Marangell LB, Husain M, Nahas Z, et al. Continuing benefit of VNS therapy over 2 years for treatment-resistant depression. Poster presented at the 43rd Annual NCDEU Meeting, 2003.Google Scholar
  124. 124.
    Sackheim HA, Rush AJ, George MS, et al. Vagus nerve stimulation (VNS) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 25: 713–728, 2001.CrossRefGoogle Scholar
  125. 125.
    Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK, Davis SM, Howland R, Kling MA, Rittberg BR, Burke WJ, Rapaport MH, Zajecka J, Nierenberg AA, Husain MM, Ginsberg D, Cooke RG. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry 58: 347–354, 2005.PubMedCrossRefGoogle Scholar
  126. 126.
    George MS, Rush AJ, Marangell LB, Sackeim HA, Brannan SK, Davis SM, Howland R, Kling MA, Moreno F, Rittberg B, Dunner D, Schwartz T, Carpenter L, Burke M, Ninan P, Goodnick P. A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression. Biol Psychiatry 58: 364–373, 2005.PubMedCrossRefGoogle Scholar
  127. 127.
    Rush AJ, Sackeim HA, Marangell LB, George MS, Brannan SK, Davis SM, Lavori P, Howland R, Kling MA, Rittberg B, Carpenter L, Ninan P, Moreno F, Schwartz T, Conway C, Burke M, Barry JJ. Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biol Psychiatry 58: 355–363, 2005.PubMedCrossRefGoogle Scholar
  128. 128.
    Benabid A. Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 13: 696–706, 2003.PubMedCrossRefGoogle Scholar
  129. 129.
    Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. N Engl J Med 339: 1130–1143, 1998.PubMedCrossRefGoogle Scholar
  130. 130.
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron 45: 651–660, 2005.PubMedCrossRefGoogle Scholar
  131. 131.
    McIntyre CC, Savasta M, Walter BL, Vitek JL. How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 21: 40–50, 2004.PubMedCrossRefGoogle Scholar
  132. 132.
    Jimenez F, Velasco F, Salin-Pascual R, Hernandez JA, Velasco M, Criales JL, Nicolini H. A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery 57: 585–593, 2005.PubMedCrossRefGoogle Scholar
  133. 133.
    D’Sa C, Duman RS. Antidepressants and neuroplasticity. Bipolar Disord 4: 183–194, 2002.PubMedCrossRefGoogle Scholar
  134. 134.
    Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff KD, Gray N, Zarate CA, Charney DS. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for dificult to treat depression. Biol Psychiatry 53: 707–742, 2003.PubMedCrossRefGoogle Scholar
  135. 135.
    Quiroz JA, Singh J, Gould TD, Denicoff KD, Zarate CA, Manji HK. Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol Psychiatry 9: 756–776, 2004.PubMedCrossRefGoogle Scholar
  136. 136.
    Young L. Neuroprotective effects of antidepressant and mood stabilizing drugs. J Psychiatry Neurosci 27: 8–9, 2002.PubMedGoogle Scholar
  137. 137.
    Holzheimer PE III, Nemeroff CB. Advances in the treatment of depression. NeuroRx 3: 42–56, 2006.CrossRefGoogle Scholar
  138. 138.
    Brown ES, Rush AJ, McEwen BS. Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 21: 474–484, 1999.PubMedCrossRefGoogle Scholar
  139. 139.
    McEwen B. Stress and hippocampal plasticity. Annu Rev Neurosci 22: 105–122, 1999.PubMedCrossRefGoogle Scholar
  140. 140.
    Sapolsky R. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57: 925–935, 2000.PubMedCrossRefGoogle Scholar
  141. 141.
    Watson S, Gallagher P, Ritchie JC, Ferrier IN, Young AH. Hypothalamic-pituitary-adrenal axis functions in patients with bipolar disorder. Br J Psychiatry 184: 496–502, 2004.PubMedCrossRefGoogle Scholar
  142. 142.
    Brown SM, Henning S, Wellman CL. Mild, Short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb Cortex 15: 1714–1722, 2005.PubMedCrossRefGoogle Scholar
  143. 143.
    Cook SC, Wellman CL. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60: 236–248, 2004.PubMedCrossRefGoogle Scholar
  144. 144.
    Wellman CL. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 49: 245–253, 2001.PubMedCrossRefGoogle Scholar
  145. 145.
    McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 490: 13–24, 2004.PubMedCrossRefGoogle Scholar
  146. 146.
    Magistretti PJ, Pellerin L, Martin JL. Brain energy metabolism: an integrated cellular perspective. In: Psychopharmacology: the fourth generation of progress (Bloom FE, Kupfer DJ, eds), pp 921–932. New York: Raven Press, 1995.Google Scholar
  147. 147.
    Kato T, Kato N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2: 180–190, 2000.PubMedCrossRefGoogle Scholar
  148. 148.
    Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10: 900–919, 2005.PubMedCrossRefGoogle Scholar
  149. 149.
    Kato T. Mitochondrial dysfunction in bipolar disorder: from 31P-magnetic resonance spectroscopic findings to their molecular mechanisms. Int Rev Neurobiol 63: 21–40, 2005.PubMedCrossRefGoogle Scholar
  150. 150.
    Szabo ST, Gould TD, Manji HK. Introduction to neurotransmitters, receptors, signal transduction, and second messengers. In: Textbook of psychopharmacology (Nemeroff CB, Schatzberg AF, eds), Ed 3. Arlington, VA: The American Psychiatric Publishing, 2003.Google Scholar
  151. 151.
    Bowden CL, Huang LG, Javors MA, Johnson JM, Seleshi E, McIntyre K, et al. Calcium function in affective disorders and healthy controls. Biol Psychiatry 23: 367–376, 1988.PubMedCrossRefGoogle Scholar
  152. 152.
    Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S. Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61: 300–308, 2004.PubMedCrossRefGoogle Scholar
  153. 153.
    Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11: 272–280, 2001.PubMedCrossRefGoogle Scholar
  154. 154.
    Blum R, Konnerth A. Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) 20: 70–78, 2005.CrossRefGoogle Scholar
  155. 155.
    Lu B, Pang PT, Woo NH. The yin and yang of neurotrophin action. Nat Rev Neurosci 6: 603–614, 2005.PubMedCrossRefGoogle Scholar
  156. 156.
    Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112: 257–269, 2003.PubMedCrossRefGoogle Scholar
  157. 157.
    Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Graos MM, et al. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12: 1329–1343, 2005.PubMedCrossRefGoogle Scholar
  158. 158.
    Levine ES, Crozier RA, Black IB, Plummer MR. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc Natl Acad Sci USA 95: 10235–10239, 1998.PubMedCrossRefGoogle Scholar
  159. 159.
    DeVries AC, Joh HD, Bernard O, Hattori K, Hum PD, Traystman RJ, et al. Social stress exacerbates stroke outcome by suppressing Bcl-2 expression. Proc Natl Acad Sci USA 98: 11824–11828, 2001.PubMedCrossRefGoogle Scholar
  160. 160.
    Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 46: 1181–1191, 1999.PubMedCrossRefGoogle Scholar
  161. 161.
    D’Sa C, Duman R. Antidepressants and neuroplasticity. Bipolar Disorder 4: 183, 2002.CrossRefGoogle Scholar
  162. 162.
    Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S, et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 20: 4030–4036, 2000.PubMedGoogle Scholar
  163. 163.
    Chen AC, Shirayama Y, Shin KH, Neve RL, Duman RS. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol Psychiatry 49: 753–762, 2001.PubMedCrossRefGoogle Scholar
  164. 164.
    Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22: 3251–3261, 2002.PubMedGoogle Scholar
  165. 165.
    Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 56: 131–137, 1997.PubMedCrossRefGoogle Scholar
  166. 166.
    Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50: 260–265, 2001.PubMedCrossRefGoogle Scholar
  167. 167.
    Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS. Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 222: 157–162, 1992.PubMedCrossRefGoogle Scholar
  168. 168.
    Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98: 12796–12801, 2001.PubMedCrossRefGoogle Scholar
  169. 169.
    Zhou R, Gray NA, Yuan P, Li X, Chen J, Chen G, et al. The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. J Neurosci 25: 4493–4502, 2005.PubMedCrossRefGoogle Scholar
  170. 170.
    Corson TW, Woo KK, Li PP, Warsh JJ. Cell-type specific regulation of calreticulin and Bcl-2 expression by mood stabilizer drugs. Eur Neuropsychopharmacol 14: 143–150, 2004.PubMedCrossRefGoogle Scholar
  171. 171.
    Chuang DM. Neuroprotective and neurotrophic actions of the mood stabilizer lithium: can it be used to treat neurodegenerative diseases? Crit Rev Neurobiol 16: 83–90, 2004.PubMedCrossRefGoogle Scholar
  172. 172.
    Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB. Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 7: 1397–1400, 1996.PubMedCrossRefGoogle Scholar
  173. 173.
    Tsai G, Coyle JT. N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 46: 531–540, 1995.PubMedCrossRefGoogle Scholar
  174. 174.
    Moore GJ, Bebchuck JM, Wilds IB, Chen G, Manji HK. Lithium-induced increase in human brain gray matter. Lancet 356: 1241–1242, 2000.PubMedCrossRefGoogle Scholar
  175. 175.
    Moore GJ, CB, Glitz DA, et al. Lithium increases gray matter in the prefrontal and subgenual prefrontal cortices in treatment responsive bipolar disorder patients. Submitted.Google Scholar
  176. 176.
    Cirelli C, Tononi G. Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci 20: 9187–9194, 2000.PubMedGoogle Scholar
  177. 177.
    Payne JL, Quiroz JA, Zarate CA Jr, Manji HK. Timing is everything: does the robust upregulation of noradrenergically regulated plasticity genes underlie the rapid antidepressant effects of sleep deprivation? Biol Psychiatry 52: 921–926, 2002.PubMedCrossRefGoogle Scholar
  178. 178.
    Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA 93: 8455–8459, 1996.PubMedCrossRefGoogle Scholar
  179. 179.
    Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signaling in intact cells. Curr Biol 6: 1664–1668, 1996.PubMedCrossRefGoogle Scholar
  180. 180.
    Gould TD, Manji HK. Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30: 1223–1237, 2005.PubMedGoogle Scholar
  181. 181.
    Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multitasking kinase. J Cell Sci 116: 1175–1186, 2003.PubMedCrossRefGoogle Scholar
  182. 182.
    Gould TD, Quiroz JA, Singh J, Zarate CA, Manji HK. Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 9: 734–755, 2004.PubMedCrossRefGoogle Scholar
  183. 183.
    Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature 423: 435–439, 2003.PubMedCrossRefGoogle Scholar
  184. 184.
    Gould TD, Manji HK. The wnt signaling pathway in bipolar disorder. Neuroscientist 8: 497–511, 2002.PubMedCrossRefGoogle Scholar
  185. 185.
    Jope RS, Bijur GN. Mood stabilizers, glycogen synthase kinase-3 β and cell survival. Mol Psychiatry 7: S35-S45, 2002.PubMedCrossRefGoogle Scholar
  186. 186.
    Ohnaka K, Tanabe M, Kawate H, Nawata H, Takayanagi R. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Commun 329: 177–181, 2005.PubMedCrossRefGoogle Scholar
  187. 187.
    Smith E, Frenkel B. Glucocorticoid s inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3β-dependent and -independent manner. J Biol Chem 280: 2388–2394, 2005.PubMedCrossRefGoogle Scholar
  188. 188.
    Martinez A, Castro A, Dorronsoro I, Alonso M. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med Res Rev 22: 373–384, 2002.PubMedCrossRefGoogle Scholar
  189. 189.
    Martinez A, Castro A, Dorronsoro I, Alonso M. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med Res Rev 22: 373–384, 2002.PubMedCrossRefGoogle Scholar
  190. 190.
    Endres M, Meisel A, Biniszkiewicz D, et al. DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 20: 3175–3181, 2000.PubMedGoogle Scholar
  191. 191.
    Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. Neurochem 89: 1358–1367, 2004.CrossRefGoogle Scholar
  192. 192.
    Gardian G, Yang L, Cleren C, Calingasan NY, Klivenyi P, Beal F. Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Nanomolecular Med 5: 235–241, 2004.CrossRefGoogle Scholar
  193. 193.
    Ferrante RJ, Kubilus JK, Lee J, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23: 9418–9427, 2003.PubMedGoogle Scholar
  194. 194.
    Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA 100: 2041–2046, 2003.PubMedCrossRefGoogle Scholar
  195. 195.
    Weaver I, Cervoni N, Champagne F, et al. Epigenetic programming by maternal behavior. Nat Neurosci 7: 847–854, 2004.PubMedCrossRefGoogle Scholar
  196. 196.
    Tremolizzo L, Doueiri MS, Dong E, et al. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 57: 500–509, 2005.PubMedCrossRefGoogle Scholar
  197. 197.
    Manji HK, Lenox RH. Ziskin-Somerfeld Research Award. Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol Psychiatry 46: 1328–1351, 1999.PubMedCrossRefGoogle Scholar
  198. 198.
    Birnbaum SG, Yuan PX, Wang M, Vijayraghavan S, Bloom AK, Davis DJ, Gobeske KT, Sweatt JD, Manji HK, Arnsten AFT. Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 306: 882–884, 2004.PubMedCrossRefGoogle Scholar
  199. 199.
    Einat H, MH. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Submitted.Google Scholar
  200. 200.
    Bebchuk JM, Arfken CL, Dolan-Manji S, Murphy J, Hasanat K, Manji HK. A preliminary investigation of a protein kinase C inhibitor in the treatment of acute mania. Arch Gen Psychiatry 57: 95–97, 2000.PubMedCrossRefGoogle Scholar
  201. 201.
    Haggerty JJ Jr, Prange AJ Jr. Borderline hypothyroidism and depression. Annu Rev Med 46: 37–46, 1995.PubMedCrossRefGoogle Scholar
  202. 202.
    Bauer M, London ED, Silverman DH, Rasgon N, Kirchheiner J, Whybrow PC. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging. Pharmacopsychiatry 36 [Suppl 3]: S215-S221, 2003.PubMedGoogle Scholar
  203. 203.
    Cole DP, Thase ME, Mallinger AG, Soares JC, Luther JF, Kupfer DJ, Frank E. Slower treatment response in bipolar depression predicted by lower pretreatment thyroid function. Am J Psychiatry 159: 116–121, 2002.PubMedCrossRefGoogle Scholar
  204. 204.
    Frye MA, Denicoff KD, Bryan AL, Smith-Jackson EE, Ali SO, Luckenbaugh D, Leverich GS, Post RM. Association between lower serum free T4 and greater mood instability and depression in lithium-maintained bipolar patients. Am J Psychiatry 156: 1909–1914, 1999.PubMedGoogle Scholar
  205. 205.
    Joffe R. Refractory depression: treatment strategies, with particular reference to the thyroid axis. J Psychiatry Neurosci 22: 327–331, 1997.PubMedGoogle Scholar
  206. 206.
    Prange A. Novel uses of thyroid hormones in patients with affective disorders. Thyroid 6: 537–543, 1996.PubMedCrossRefGoogle Scholar
  207. 207.
    Ruel J, Faure R, Dussault JH. Regional distribution of nuclear T3 receptors in rat brain and evidence for preferential localization in neurons. J Endocrinol Invest 8: 343–348, 1985.PubMedGoogle Scholar
  208. 208.
    Schwartz HL, Oppenheimer JH. Nuclear triiodothyronine receptor sites in brain: probable identity with hepatic receptors and regional distribution. Endocrinol 103: 267–273, 1978.CrossRefGoogle Scholar
  209. 209.
    Marangell LB, Ketter TA, George MS, Pazzaglia PJ, Callahan AM, Parekh P, Andreason PJ, Horwitz B, Herscovitch P, Post RM. Inverse relationship of peripheral thyrotropin-stimulating hormone levels to brain activity in mood disorders. Am J Psychiatry 154: 224–230, 1997.PubMedGoogle Scholar
  210. 210.
    Bauer M, London ED, Rasgon N, Berman SM, Frye MA, Altshuler LL, Mandelkern MA, Bramen J, Voytek B, Woods R, Mazziotta JC, Whybrow PC. Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improve mood in bipolar depression. Mol Psychiatry 10: 456–469, 2005.PubMedCrossRefGoogle Scholar
  211. 211.
    Ketter TA, Wang PW. The emerging differential roles of GABAergic and antiglutamatergic agents in bipolar disorders. J Clin Psychiatry 64 [Suppl 3]: 15–20, 2003.PubMedGoogle Scholar
  212. 212.
    Zarate CA, Quiroz J, Payne J, Manji HK. Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Psychopharmacol Bull 36: 35–83, 2002.PubMedGoogle Scholar
  213. 213.
    Stahl SM. Finding what you are not looking for: strategies for developing novel treatments in psychiatry. NeuroRx 3: 3–9, 2006.PubMedCrossRefGoogle Scholar
  214. 214.
    Calabrese JR, Bowden CL, Sachs GS, Ascher JA, Monaghan E, Rudd GD. A double-blind placebo-controlled study of lamotrigine monotherapy in outpatients with bipolar I depression. Lamictal 602 Study Group. J Clin Psychiatry 60: 79–88, 1999.PubMedCrossRefGoogle Scholar
  215. 215.
    Calabresi P, Siniscalchi A, Pisani A, Stefani A, Mercuri NB, Bernardi G. A field potential analysis on the effects of lamotrigine, GP 47779, and felbamate in neocortical slices. Neurology 47: 557–562, 1996.PubMedCrossRefGoogle Scholar
  216. 216.
    Leach MJ, Marden CM, Miller AA. Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia 27: 490–497, 1986.PubMedCrossRefGoogle Scholar
  217. 217.
    Wang SJ, Huange CC, Hsu KS, Tsai JJ, Gean PW. Presynaptic inhibition of excitatory neurotransmission by lamotrigine in the rat amygdalar neurons. Synapse 24: 248–255, 1996.PubMedCrossRefGoogle Scholar
  218. 218.
    Zarate CA, Payne J, Quiroz JA, et al. An open-label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiatry 161: 171–174, 2004.PubMedCrossRefGoogle Scholar
  219. 219.
    Zarate CA, Quiroz JA, Singh JB, Denicoff KD, De Jesus G, Luckenbaugh DA, Charney DS, Manji HK. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiatry 57: 430–432, 2005.PubMedCrossRefGoogle Scholar
  220. 220.
    Cameron HA, McEwen BS, Gould E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15: 4687–4692, 1995.PubMedGoogle Scholar
  221. 221.
    Zarate CA, Singh JB, Quiroz J, et al. A double-blind placebo controlled study of memantine in major depression. Am J Psychiatry 163: 153–155, 2006.PubMedCrossRefGoogle Scholar
  222. 222.
    Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47: 351–354, 2000.PubMedCrossRefGoogle Scholar
  223. 223.
    Zarate CA Jr, Singh JB, Carlson PJ, Brutsche N, Ameli R, Luckenbaugh DA, et al. Robust, rapid, and relatively sustained anti-depressant effects with a single dose of an NMDA antagonist in treatment resistant major depression: a double-blind placebo-controlled study. Arch Gen Psychiatry, in press.Google Scholar
  224. 224.
    Bleakman D, Lodge D. Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 37: 1187–1204, 1998.PubMedCrossRefGoogle Scholar
  225. 225.
    Borges K, Dingledine R. AMPA receptors: molecular and functional diversity. Prog Brain Res 116: 153–170, 1998.PubMedCrossRefGoogle Scholar
  226. 226.
    Black M. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacol (Berl) 179: 154–163, 2005.CrossRefGoogle Scholar
  227. 227.
    Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P. Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 40: 1028–1033, 2001.PubMedCrossRefGoogle Scholar
  228. 228.
    Bai F, Bergeron M, Nelson DL. Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus. Neuropharmacology 44: 1013–1021, 2003.PubMedCrossRefGoogle Scholar
  229. 229.
    Lauterborn J, Lynch G, Vanderklish P, Arai A et al. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci 20: 8–21, 2000.PubMedGoogle Scholar
  230. 230.
    Lauterborn J, Truong GS, Baudry M, Bi X, Lynch G, Gall C. Chronic elevation of brain-derived neurotrophic factor by AM-PAkines. J Pharmacol Exp Ther 307: 297–305, 2003.PubMedCrossRefGoogle Scholar
  231. 231.
    Knapp RJ, Goldengerg R, Shuck C, et al. Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur J Pharmacol 440: 27–35, 2002.PubMedCrossRefGoogle Scholar
  232. 232.
    Nicoletti F, Bruno V, Copani A, Casabona G, Knopfel T. Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trend Neurosci 19: 267–271, 1996.PubMedCrossRefGoogle Scholar
  233. 233.
    Maiese K, Vincent A, Lin SH, Shaw T. Group I and group III metabotropic glutamate receptor subtypes provide enhanced neuroprotection. J Neurosci Res 62: 257–272, 2000.PubMedCrossRefGoogle Scholar
  234. 234.
    Palucha A, Tatarczynska E, Branski P, et al. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology 46: 151–159, 2004.PubMedCrossRefGoogle Scholar
  235. 235.
    Schoepp D. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299: 12–20, 2001.PubMedGoogle Scholar
  236. 236.
    Chojnacka-Wojcik E, Klodzinska A, Pilc A. Glutamate receptor ligands as anxiolytics. Curr Opin Investig Drugs 2: 1112–1119, 2001.PubMedGoogle Scholar
  237. 237.
    Spooren WP, Vassout A, Neijt HC, et al. Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295: 1267–1275, 2000.PubMedGoogle Scholar
  238. 238.
    Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, et al. Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective, and systemically active mGlu5 receptor antagonist. Br J Pharmacol 1423–1430, 2001.Google Scholar
  239. 239.
    Tatarczynska E, Klodzinska A, Kroczka B, Chojnacka-Wojcik E, Pilc A. The antianxiety-like effects of antagonists of grouop I and agonists of group II and III metabotropic glutamate receptors after intrahippocampal administration. Psychopharmacol (Berl) 158: 94–99, 2001.CrossRefGoogle Scholar
  240. 240.
    Drevets WC, Raichle ME. Neuroanatomical circuits in depression: implications for treatment mechanisms. Psychopharmacol Bull 28: 261–274, 1992.PubMedGoogle Scholar
  241. 241.
    Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. European Neuropsychopharmacology 12: 527–544, 2002.PubMedCrossRefGoogle Scholar
  242. 242.
    Drevets WC, Thase M, Price JC, Bogers W, Greer PJ, Kupfer DK. Antidepressant drug effects on regional glucose metabolism in major depression. Soc Neurosci Abstr 32: 803.3, 2002.Google Scholar
  243. 243.
    Holthoff VA, Beuthien-Baumann B, Zundorf G, Triemer A, Ludecke S, Winiecki P, Koch R, et al. Changes in brain metabolism associated with remission in unipolar major depression. Acta Psychiatr Scand 110: 184–194, 2004.PubMedCrossRefGoogle Scholar
  244. 244.
    Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S, Arifuzzman AI, Houle S, Vaccarino FJ. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry 158: 899–905, 2001.PubMedGoogle Scholar
  245. 245.
    Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48: 830–843, 2000.PubMedCrossRefGoogle Scholar
  246. 246.
    Nobler MS, Roose SP, Prohovnik I, Moeller JR, Louie J, Van Heertum RL, Sackheim HA. Regional cerebral blood flow in mood disorders, V. Effects of antidepressant medication in late-life depression. Am J Geriatr Psychiatry 8: 289–296, 2000.PubMedGoogle Scholar
  247. 247.
    Nofzinger EA, Berman S, Fasiczka A, Miewald JM, Meltzer CC, Price JC, Sembrat RC, et al. Effects of bupropion SR on anterior paralimbic function during waking and REM sleep in depression: preliminary findings using [18F]-FDG PET. Psychiatry Res: Neuroimaging Section 106: 95–111, 2001.CrossRefGoogle Scholar
  248. 248.
    Saxena S, Brody AL, Ho ML, Alborzian S, Maidment KM, Zohrabi N, Ho MK, et al. Differential cerebral metabolic changes with paroxetine treatment of obsessive-compulsive disorder vs major depression. Arch Gen Psychiatry 59: 250–261, 2002.PubMedCrossRefGoogle Scholar
  249. 249.
    Smith GS, Reynolds CF, Pollock B, Derbyshire S, Nofzinger E, Dew MA, Houck PR, et al. Cerebral glucose metabolic response to combined total sleep deprivation and antidepressant treatment in geriatric depression. Am J Psychiatry 156: 683–689, 1999.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2006

Authors and Affiliations

  • Paul J. Carlson
    • 1
    • 2
  • Jaskaran B. Singh
    • 1
  • Carlos A. Zarate
    • 1
  • Wayne C. Drevets
    • 2
  • Husseini K. Manji
    • 1
  1. 1.Laboratory of Molecular PathophysiologyNational Institute of Mental HealthBethesda
  2. 2.Section on Neuroimaging in Mood Disorders, Mood and Anxiety Disorders Research ProgramNational Institute of Mental HealthBethesda

Personalised recommendations