NeuroRX

, Volume 3, Issue 1, pp 57–68

Advances in the treatment of anxiety: Targeting glutamate

Article

Abstract

Our current psychopharmacological treatments for anxiety disorders evince a number of shortcomings, including troublesome side effects and lack of primary effects. Whereas many new drugs have been developed in the past few decades, most are based on outmoded theories of the pathogenesis of these disorders (i.e., monoamine hypotheses), thus frustrating our ability to create more specific and effective interventions. Recently, however, the neurobiological literature has shown a convergence of findings focusing on the glutamatergic system in anxiety disorders, and the growth of pharmacological tools targeting these receptors has led to the development of novel treatments having anxiolytic effects in humans and animals alike. Additionally, as this system is showing promise as a final common pathway in the pathogenesis of anxiety disorders, we may be able to employ glutamate-specific neuroimaging techniques (e.g., N-acetyl-aspartate, GLX) to both guide treatment decisions and present reliable objective biomarkers for treatment efficacy.

Key Words

Glutamate anxiety stress psychopharmacology treatment NMDA antagonist 

References

  1. 1.
    MacLean PD. The triune brain in evolution: role in paleocerebral functions. New York: Plenum US, 1990.Google Scholar
  2. 2.
    LeDoux J. The emotional brain: the mysterious underpinnings of emotional life. New York: Simon & Schuster, 1996.Google Scholar
  3. 3.
    Baxter LR Jr, Phelps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE. Local cerebral glucose metabolic rates in obsessive-compulsive disorder. A comparison with rates in unipolar depression and in normal controls. Arch Gen Psychiatry 44: 211–218, 1987.PubMedCrossRefGoogle Scholar
  4. 4.
    Mathew SJ, Mao X, Coplan JD, Smith EL, Sackeim HA, Gorman JM, et al. Dorsolateral prefrontal cortical pathology in generalized anxiety disorder: a proton magnetic resonance spectroscopic imaging study. Am J Psychiatry 161: 1119–1121, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Hollander E, Dell’Osso B. New developments in an evolving field. Psychiatric Times 2005.Google Scholar
  6. 6.
    Germine M. The concept of energy in Freud’s project for a scientific psychology. Ann NY Acad Sci 843: 80–90, 1998.PubMedCrossRefGoogle Scholar
  7. 7.
    Hall WD, Mant A, Mitchell PB, Rendle VA, Hickie IB, McManus P. Association between antidepressant prescribing and suicide in Australia, 1991–2000: trend analysis. BMJ 326: 1008, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Isacsson G, Bergman U, Rich CL. Epidemiological data suggest antidepressants reduce suicide risk among depressives. J Affect Disord 41: 1–8, 1996.PubMedCrossRefGoogle Scholar
  9. 9.
    Rihmer Z. Can better recognition and treatment of depression reduce suicide rates? A brief review. Eur Psychiatry 16: 406–409, 2001.PubMedCrossRefGoogle Scholar
  10. 10.
    Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA 95: 14476–14481, 1998.PubMedCrossRefGoogle Scholar
  11. 11.
    Greden JF. Unmet need: what justifies the search for a new antide pressant? J Clin Psychiatry 63 [Suppl 2]: 3–7, 2002.PubMedGoogle Scholar
  12. 12.
    Skolnick P. Antidepressants for the new millennium. Eur J Pharmacol 375: 31–40, 1999.PubMedCrossRefGoogle Scholar
  13. 13.
    Allgulander C, Dahl AA, Austin C, Morris PL, Sogaard JA, Fayyad R, et al. Efficacy of sertraline in a 12-week trial for generalized anxiety disorder. Am J Psychiatry 161: 1642–1649, 2004.PubMedCrossRefGoogle Scholar
  14. 14.
    Liebowitz MR, Gelenberg AJ, Munjack D. Venlafaxine extended release vs placebo and paroxetine in social anxiety disorder. Arch Gen Psychiatry 62: 190–198, 2005.PubMedCrossRefGoogle Scholar
  15. 15.
    Moncrieff J, Wessely S, Hardy R. Active placebos versus anti-depressants for depression. Cochrane Database Syst Rev 1:CD003012, 2004.PubMedGoogle Scholar
  16. 16.
    Otto MW, Tuby KS, Gould RA, McLean RY, Pollack MH. An effect-size analysis of the relative efficacy and tolerability of serotonin selective reuptake inhibitors for panic disorder. Am J Psychiatry 158: 1989–1992, 2001.PubMedCrossRefGoogle Scholar
  17. 17.
    Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, Gray AN et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 53: 707–742, 2003.PubMedCrossRefGoogle Scholar
  18. 18.
    Ballenger JC. Remission rates in patients with anxiety disorders treated with paroxetine. J Clin Psychiatry 65: 1696–1707, 2004.PubMedCrossRefGoogle Scholar
  19. 19.
    Barbey JT, Roose SP. SSRI safety in overdose. J Clin Psychiatry 59 [Suppl 15]: 42–48, 1998.PubMedGoogle Scholar
  20. 20.
    Rosen RC, Lane RM, Menza M. Effects of SSRIs on sexual function: a critical review. J Clin Psychopharmacol 19: 67–85, 1999.PubMedCrossRefGoogle Scholar
  21. 21.
    Harris B, Young J, Hughes B. Comparative effects of seven antide pressant regimes on appetite, weight and carbohydrate preference. Br J Psychiatry 148: 590–592, 1986.PubMedCrossRefGoogle Scholar
  22. 22.
    Hirschfeld RM. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 61 [Suppl 6]: 4–6, 2000.PubMedGoogle Scholar
  23. 23.
    McEwen BS, Olie JP. Neurobiology of mood, anxiety, and emotions as revealed by studies of a unique antidepressant: tianeptine. Mol Psychiatry 2005.Google Scholar
  24. 24.
    Petrie RX, Reid IC, Stewart CA. The N-methyl-D-aspartate receptor, synaptic plasticity, and depressive disorder. A critical review. Pharmacol Ther 87: 11–25, 2000.PubMedCrossRefGoogle Scholar
  25. 25.
    Sanger D, Willner P, Bergman J. Applications of behavioural pharmacology in drug discovery. Behav Pharmacol 14: 363–367, 2003.PubMedGoogle Scholar
  26. 26.
    Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, et al. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 7 [Suppl 1]: S71-S80, 2002.PubMedCrossRefGoogle Scholar
  27. 27.
    Kendler KS, Karkowski-Shuman L. Stressful life events and genetic liability to major depression: genetic control of exposure to the environment? Psychol Med 27: 539–547, 1997.PubMedCrossRefGoogle Scholar
  28. 28.
    Santarelli L, Gobbi G, Debs PC, Sibille ET, Blier P, Hen R, et al. Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc Natl Acad Sci USA 98: 1912–1917, 2001.PubMedCrossRefGoogle Scholar
  29. 29.
    Heilig M. The NPY system in stress, anxiety and depression. Neuropeptides 38: 213–224, 2004.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R. Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21: 52S-60S, 1999.PubMedGoogle Scholar
  31. 31.
    Gross C, Hen R. The developmental origins of anxiety. Nat Rev Neurosci 5: 545–552, 2004.PubMedCrossRefGoogle Scholar
  32. 32.
    Morgan CA 3rd, Rasmusson AM, Wang S, Hoyt G, Hauger RL, Hazlett G. Neuropeptide-Y, cortisol, and subjective distress in humans exposed to acute stress: replication and extension of previous report. Biol Psychiatry 52: 136–142, 2002.PubMedCrossRefGoogle Scholar
  33. 33.
    Atack JR. The benzodiazepine binding site of GABA(A) receptors as a target for the development of novel anxiolytics. Expert Opin Investig Drugs 14: 601–618, 2005.PubMedCrossRefGoogle Scholar
  34. 34.
    McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor α1 subtype. Nat Neurosci 3: 587–592, 2000.PubMedCrossRefGoogle Scholar
  35. 35.
    Habib KE, Weld KP, Rice KC, Pushkas J, Champoux M, Listwak S, et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc Natl Acad Sci USA 97: 6079–6084, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    Coplan JD, Andrews MW, Rosenblum LA, Owens MJ, Friedman S, Gorman JM, et al. Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders. Proc Natl Acad Sci USA 93: 1619–1623, 1996.PubMedCrossRefGoogle Scholar
  37. 37.
    Cahill L, Prins B, Weber M, McGaugh JL. β-Adrenergic activation and memory for emotional events. Nature 371: 702–704, 1994.PubMedCrossRefGoogle Scholar
  38. 38.
    Pitman RK, Sanders KM, Zusman RM, Healy AR, Cheema F, Lasko NB, et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol Psychiatry 51: 189–192, 2002.PubMedCrossRefGoogle Scholar
  39. 39.
    Paul IA, Skolnick P. Glutamate and depression: clinical and preclinical studies. Ann NY Acad Sci 1003: 250–272, 2003.PubMedCrossRefGoogle Scholar
  40. 40.
    Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R. Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 29: 23–26, 1996.PubMedCrossRefGoogle Scholar
  41. 41.
    Mathew SJ, Coplan JD, Schoepp DD, Smith EL, Rosenblum LA, Gorman JM. Glutamatehypothalamic-pituitary-adrenal axis interactions: implications for mood and anxiety disorders. CNS Spectr 6: 555–564, 2001.PubMedGoogle Scholar
  42. 42.
    Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301: 386–389, 2003.PubMedCrossRefGoogle Scholar
  43. 43.
    Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8: 828–834, 2005.PubMedCrossRefGoogle Scholar
  44. 44.
    Bifulco A, Bernazzani O, Moran PM, Ball C. Lifetime stressors and recurrent depression: preliminary findings of the Adult Life Phase Interview (ALPHI). Soc Psychiatry Psychiatr Epidemiol 35: 264–275, 2000.PubMedCrossRefGoogle Scholar
  45. 45.
    Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 54: 597–606, 1997.PubMedCrossRefGoogle Scholar
  46. 46.
    Bagley J, Moghaddam B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience 77: 65–73, 1997.PubMedCrossRefGoogle Scholar
  47. 47.
    McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci 22: 105–122, 1999.PubMedCrossRefGoogle Scholar
  48. 48.
    Moghaddam B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60: 1650–1657, 1993.PubMedCrossRefGoogle Scholar
  49. 49.
    Moghaddam B, Bolinao ML, Stein-Behrens B, Sapolsky R. Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res 655: 251–254, 1994.PubMedCrossRefGoogle Scholar
  50. 50.
    Moghaddam B. Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders. Biol Psychiatry 51: 775–787, 2002.PubMedCrossRefGoogle Scholar
  51. 51.
    Coyle JT, Leski ML, Morrison JH. The diverse roles of L-glutamic acid in brain signal transduction. In: Neuropsychopharmacology: the fifth generation of progress (Davis KL, Charney D, Coyle JT, Nemeroff C, eds), Ed 5, pp 71–90. Philadelphia: Lippincott Williams & Wilkins, 2002.Google Scholar
  52. 52.
    Bergink V, van Megen HJ, Westenberg HG. Glutamate and anxiety. Eur Neuropsychopharmacol 14: 175–183, 2004.PubMedCrossRefGoogle Scholar
  53. 53.
    Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39, 1993.PubMedCrossRefGoogle Scholar
  54. 54.
    Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69: 89–98, 1995.PubMedCrossRefGoogle Scholar
  55. 55.
    Kemp JA, McKernan RM. NMDA receptor pathways as drug targets. Nat Neurosci 5 [Suppl]: 1039–1042, 2002.PubMedCrossRefGoogle Scholar
  56. 56.
    Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 90: 6591–6595, 1993.PubMedCrossRefGoogle Scholar
  57. 57.
    Sanacora G, Rothman DL, Mason G, Krystal JH. Clinical studies implementing glutamate neurotransmission in mood disorders. Ann NY Acad Sci 1003: 292–308, 2003.PubMedCrossRefGoogle Scholar
  58. 58.
    Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry 6: 13–34, 2001.PubMedCrossRefGoogle Scholar
  59. 59.
    LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci 23: 155–184, 2000.PubMedCrossRefGoogle Scholar
  60. 60.
    Davis M, Myers KM, Chhatwal J, Ressler KJ. Pharmacological treatments that facilitate extinction of fear: relevance to psychotherapy. NeuroRx 3: 82–96, 2006.PubMedCrossRefGoogle Scholar
  61. 61.
    Rogan MT, Staubli UV, LeDoux JE. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390: 604–607, 1997.PubMedCrossRefGoogle Scholar
  62. 62.
    Walker DL, Davis M. The role of amygdala glutamate receptors in fear learning, fearpotentiated startle, and extinction. Pharmacol Biochem Behav 71: 379–392, 2002.PubMedCrossRefGoogle Scholar
  63. 63.
    Davis M, Rainnie D, Cassell M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17: 208–214, 1994.PubMedCrossRefGoogle Scholar
  64. 64.
    Mathew SJ, Coplan JD, Gorman JM. Neurobiological mechanisms of social anxiety disorder. Am J Psychiatry 158: 1558–1567, 2001.PubMedCrossRefGoogle Scholar
  65. 65.
    Phan KL, Wager T, Taylor SF, Liberzon I. Functional neuroanatomy of emotion: a metaanalysis of emotion activation studies in PET and fMRI. Neuroimage 16: 331–348, 2002.PubMedCrossRefGoogle Scholar
  66. 66.
    Drevets WC. Neuroimaging abnormalities in the amygdala in mood disorders. Ann NY Acad Sci 985: 420–444, 2003.PubMedCrossRefGoogle Scholar
  67. 67.
    van den Heuvel OA, Veltman DJ, Groenewegen HJ, Witter MP, Merkelbach J, Cath DC, et al. Disorder-specific neuroanatomical correlates of attentional bias in obsessive-compulsive disorder, panic disorder, and hypochondriasis. Arch Gen Psychiatry 62: 922–933, 2005.PubMedCrossRefGoogle Scholar
  68. 68.
    Rauch SL, Shin LM, Wright CI. Neuroimaging studies of amygdala function in anxiety disorders. Ann NY Acad Sci 985: 389–410, 2003.PubMedCrossRefGoogle Scholar
  69. 69.
    Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML, Lasko NB, et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry 47: 769–776, 2000.PubMedCrossRefGoogle Scholar
  70. 70.
    Falls WA, Miserendino MJ, Davis M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. JNeurosci 12: 854–863, 1992.Google Scholar
  71. 71.
    Kim M, McGaugh JL. Effects of intra-amygdala injections of NMDA receptor antagonists on acquisition and retention of inhibitory avoidance. Brain Res 585: 35–48, 1992.PubMedCrossRefGoogle Scholar
  72. 72.
    Miserendino MJ, Sananes CB, Melia KR, Davis M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345: 716–718, 1990.PubMedCrossRefGoogle Scholar
  73. 73.
    Rodrigues SM, Schafe GE, LeDoux JE. Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci 21: 6889–6896, 2001.PubMedGoogle Scholar
  74. 74.
    Walker DL, Ressler KJ, Lu KT, Davis M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 22: 2343–2351, 2002.PubMedGoogle Scholar
  75. 75.
    Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, et al. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry 61: 1136–1144, 2004.PubMedCrossRefGoogle Scholar
  76. 76.
    Burghardt NS, Sullivan GM, McEwen BS, Gorman JM, LeDoux JE. The selective serotonin reuptake inhibitor citalopram increases fear after acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol Psychiatry 55: 1171–1178, 2004.PubMedCrossRefGoogle Scholar
  77. 77.
    N. Burghardt. Insights into panic disorder from fear conditioning models. American College of Neuropsychopharmacology, 43rd Annual Meeting Abstracts, 2004.Google Scholar
  78. 78.
    Boyer PA, Skolnick P, Fossom LH. Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain. A quantitative in situ hybridization study. J Mol Neurosci 10: 219–233, 1998.PubMedCrossRefGoogle Scholar
  79. 79.
    Nowak G, Legutko B, Skolnick P, Popik P. Adaptation of cortical NMDA receptors by chronic treatment with specific serotonin reuptake inhibitors. Eur J Pharmacol 342: 367–370, 1998.PubMedCrossRefGoogle Scholar
  80. 80.
    Paul IA, Nowak G, Layer RT, Popik P, Skolnick P. Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments. J Pharmacol Exp Ther 269: 95–102, 1994.PubMedGoogle Scholar
  81. 81.
    Watkins CJ, Pei Q, Newberry NR. Differential effects of electroconvulsive shock on the glutamate receptor mRNAs for NR2A, NR2B and mGluR5b. Brain Res Mol Brain Res 61: 108–113, 1998.PubMedCrossRefGoogle Scholar
  82. 82.
    Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304: 1021–1024, 2004.PubMedCrossRefGoogle Scholar
  83. 83.
    Berberich S, Punnakkal P, Jensen V, Pawlak V, Seeburg PH, Hvalby O, et al. Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci 25: 6907–6910, 2005.PubMedCrossRefGoogle Scholar
  84. 84.
    Yang CH, Huang CC, Hsu KS. Behavioral stress enhances hippocampal CA1 long-term depression through the blockade of the glutamate uptake. J Neurosci 25: 4288–4293, 2005.PubMedCrossRefGoogle Scholar
  85. 85.
    Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433: 73–77, 2005.PubMedCrossRefGoogle Scholar
  86. 86.
    Maragakis NJ, Rothstein JD. Glutamate transporters in neurologic disease. Arch Neurol 58: 365–370, 2001.PubMedCrossRefGoogle Scholar
  87. 87.
    Nagy J. The NR2B subtype of NMDA receptor: a potential target for the treatment of alcohol dependence. Curr Drug Targets CNS Neurol Disord 3: 169–179, 2004.PubMedCrossRefGoogle Scholar
  88. 88.
    Lopez de Armentia M, Sah P. Development and subunit composition of synaptic NMDA receptors in the amygdala: NR2B synapses in the adult central amygdala. J Neurosci 23: 6876–6883, 2003.PubMedGoogle Scholar
  89. 89.
    Liu XB, Murray KD, Jones EG. Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci 24: 8885–8895, 2004.PubMedCrossRefGoogle Scholar
  90. 90.
    Rosenberg DR, MacMaster FP, Keshavan MS, Fitzgerald KD, Stewart CM, Moore GJ. Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine. J Am Acad Child Adolese Psychiatry 39: 1096–1103, 2000.CrossRefGoogle Scholar
  91. 91.
    Bonanno G, Giambelli R, Raiteri L, Tiraboschi E, Zappettini S, Musazzi L, et al. Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus. J Neurosci 25: 3270–3279, 2005.PubMedCrossRefGoogle Scholar
  92. 92.
    Michael-Titus AT, Bains S, Jeetle J, Whelpton R. Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex-a possible mechanism of neuroprotection in major depression? Neuroscience 100: 681–684, 2000.PubMedCrossRefGoogle Scholar
  93. 93.
    Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47: 351–354, 2000.PubMedCrossRefGoogle Scholar
  94. 94.
    Layer RT, Popik P, Olds T, Skolnick P. Antidepressant-like actions of the polyamine site NMDA antagonist, eliprodil (SL-82.0715). Pharmacol Biochem Behav 52: 621–627, 1995.PubMedCrossRefGoogle Scholar
  95. 95.
    Nowak G, Trullas R, Layer RT, Skolnick P, Paul IA. Adaptive changes in the N-methyl-D-aspartate receptor complex after chronic treatment with imipramine and 1-aminocyclopropanecarboxylic acid. J Pharmacol Exp Ther 265: 1380–1386, 1993.PubMedGoogle Scholar
  96. 96.
    Papp M, Moryl E. Antidepressant-like effects of 1-aminocyclopropanecarboxylic acid and D-cycloserine in an animal model of depression. Eur J Pharmacol 316: 145–151, 1996.PubMedCrossRefGoogle Scholar
  97. 97.
    Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185: 1–10, 1990.PubMedCrossRefGoogle Scholar
  98. 98.
    Vale S, Espejel MA, Dominguez JC. Amantadine in depression. Lancet 2: 437, 1971.PubMedCrossRefGoogle Scholar
  99. 99.
    Xie Z, Commissaris RL. Anxiolytic-like effects of the noncompetitive NMDA antagonist MK 801. Pharmacol Biochem Behav 43: 471–477, 1992.PubMedCrossRefGoogle Scholar
  100. 100.
    Anand A, Charney DS, Oren DA, Berman RM, Hu XS, Cappiello A, et al. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry 57: 270–276, 2000.PubMedCrossRefGoogle Scholar
  101. 101.
    Hertzberg MA, Butterfield MI, Feldman ME, Beckham JC, Sutherland SM, Connor KM, et al. A preliminary study of lamotrigine for the treatment of posttraumatic stress disorder. Biol Psychiatry 45: 1226–1229, 1999.PubMedCrossRefGoogle Scholar
  102. 102.
    Berlant J, van Kammen DP. Open-label topiramate as primary or adjunctive therapy in chronic civilian posttraumatic stress disorder: a preliminary report. J Clin Psychiatry 63: 15–20, 2002.PubMedCrossRefGoogle Scholar
  103. 103.
    Sapolsky RM. Glueocortieoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57: 925–935, 2000.PubMedCrossRefGoogle Scholar
  104. 104.
    Costa E, Silva JA. From restoration of neuroplasticity to the treatment of depression: clinical experience. Eur Neuropsychopharmacol 14 [Suppl 5]: S511-S521, 2004.CrossRefGoogle Scholar
  105. 105.
    Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, et al. Stress induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98: 12796–12801, 2001.PubMedCrossRefGoogle Scholar
  106. 106.
    Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS. Tianeptine attenuates stressinduced morphological changes in the hippocampus. Eur J Pharmacol 222: 157–162, 1992.PubMedCrossRefGoogle Scholar
  107. 107.
    Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125: 1–6, 2004.PubMedCrossRefGoogle Scholar
  108. 108.
    Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16: 525–534, 1992.PubMedCrossRefGoogle Scholar
  109. 109.
    Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58: 545–553, 2001.PubMedCrossRefGoogle Scholar
  110. 110.
    Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry 48: 813–829, 2000.PubMedCrossRefGoogle Scholar
  111. 111.
    Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95: 13290–13295, 1998.PubMedCrossRefGoogle Scholar
  112. 112.
    Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45: 1085–1098, 1999.PubMedCrossRefGoogle Scholar
  113. 113.
    Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93: 3908–3913, 1996.PubMedCrossRefGoogle Scholar
  114. 114.
    Cratty MS, Birkle DL. N-methyl-D-aspartate (NMDA)-mediated corticotropin-releasing factor (CRF) release in cultured rat amygdala neurons. Peptides 20: 93–100, 1999.PubMedCrossRefGoogle Scholar
  115. 115.
    Duman RS. Synaptic plasticity and mood disorders. Mol Psychiatry 7 [Suppl 1]: S29-S34, 2002.PubMedCrossRefGoogle Scholar
  116. 116.
    Carlson PJ, Singh JB, Zarate CA Jr, Drevets WC, Manji HK. Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRx 3: 22–41, 2006.PubMedCrossRefGoogle Scholar
  117. 117.
    Zinebi F, Xie J, Liu J, Russell RT, Gallagher JP, McKernan MG, et al. NMDA currents and receptor protein are downregulated in the amygdala during maintenance of fear memory. J Neurosci 23: 10283–10291, 2003.PubMedGoogle Scholar
  118. 118.
    Cottrell JR, Borok E, Horvath TL, Nedivi E. CPG2: a brain- and synapse-specific protein that regulates the endocytosis of glutamate receptors. Neuron 44: 677–690, 2004.PubMedGoogle Scholar
  119. 119.
    Lavezzari G, McCallum J, Dewey CM, Roche KW. Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci 24: 6383–6391, 2004.PubMedCrossRefGoogle Scholar
  120. 120.
    Jacobs BL, Praag H, Gage FH. Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5: 262–269, 2000.PubMedCrossRefGoogle Scholar
  121. 121.
    Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med 7: 541–547, 2001.PubMedCrossRefGoogle Scholar
  122. 122.
    Skolnick P, Legutko B, Li X, Bymaster FP. Current perspectives on the development of non-biogenic amine-based antidepressants. Pharmacol Res 43: 411–423, 2001.PubMedCrossRefGoogle Scholar
  123. 123.
    Hashimoto R, Hough C, Nakazawa T, Yamamoto T, Chuang DM. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem 80: 589–597, 2002.PubMedCrossRefGoogle Scholar
  124. 124.
    Moore GJ, Bebchuk JM, Hasanat K, Chen G, Seraji-Bozorgzad N, Wilds IB, et al. Lithium increases N-acetyl-as partate in the human brain: in vivo evidence in support of bcl-2’s neurotrophic effects? Biol Psychiatry 48: 1–8, 2000.PubMedCrossRefGoogle Scholar
  125. 125.
    Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK. Lithium-induced increase in human brain grey matter. Lancet 356: 1241–1242, 2000.PubMedCrossRefGoogle Scholar
  126. 126.
    Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301: 805–809, 2003.PubMedCrossRefGoogle Scholar
  127. 127.
    Zarate CA Jr, Payne JL, Quiroz J, Sporn J, Denicoff KK, Luckenbaugh D, et al. An open label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiatry 161: 171–174, 2004.PubMedCrossRefGoogle Scholar
  128. 128.
    Zarate CA Jr, Quiroz JA, Singh JB, Denicoff KD, De Jesus G, Luckenbaugh DA, et al. An open-label trial of the glutamatemodulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiatry 57: 430–432, 2005.PubMedCrossRefGoogle Scholar
  129. 129.
    Mathew SJ, Amiel JM, Coplan JD, Fitterling HA, Sackeim HA, Gorman JM. Riluzole in generalized anxiety disorder: an open-label trial. Am J Psychiatry, in press.Google Scholar
  130. 130.
    Coric V, Milanovic S, Wasylink S, Patel P, Malison R, Krystal JH. Beneficial effects of the antiglutamatergic agent riluzole in a patient diagnosed with obsessive-compulsive disorder and major depressive disorder. Psychopharmacology (Berl) 167: 219–220, 2003.Google Scholar
  131. 131.
    Doble A. The pharmacology and mechanism of action of riluzole. Neurology 47: S233-S241, 1996.PubMedCrossRefGoogle Scholar
  132. 132.
    Frizzo ME, Dall’Onder LP, Dalcin KB, Souza DO. Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell Mol Neurobiol 24: 123–128, 2004.PubMedCrossRefGoogle Scholar
  133. 133.
    Kniest A, Wiesenberg C, Weber B, Colla M, Heuser I, Deuschle M. The glutamate antagonist riluzole and its effects upon basal and stress-induced activity of the human hyp othalamus-pituitary-adrenocortical system in elderly subjects. Neuropsychobiology 43: 91–95, 2001.PubMedCrossRefGoogle Scholar
  134. 134.
    Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ, et al. Memantine in mo derate-to-severe Alzheimer’s disease. N Engl J Med 348: 1333–1341, 2003.PubMedCrossRefGoogle Scholar
  135. 135.
    Zarate CA Jr, Singh J, Quiroz, JA, Denicoff KD, De Jesus G, Luckenbaugh D, Manji HK, Charney DS. Memantine in major depression: a double-blind placebo-controlled study. Am J Psychiatry, in press.Google Scholar
  136. 136.
    Maler JM, Esselmann H, Wiltfang J, Kunz N, Lewczuk P, Reulbach U, et al. Memantine inhibits ethanol-induced NMDA receptor up-regulation in rat hippocampal neurons. Brain Res 1052: 152–162, 2005.CrossRefGoogle Scholar
  137. 137.
    Swanson CJ, Bures M, Johnson MP, Linden AM, Monn JA, Schoepp DD. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov 4: 131–144, 2005.PubMedCrossRefGoogle Scholar
  138. 138.
    Grillon C, Cordova J, Levine LR, Morgan CA 3rd. Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology (Berl) 168: 446–454, 2003.CrossRefGoogle Scholar
  139. 139.
    Nicoletti F, Bruno V, Copani A, Casabona G, Knopfel T. Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci 19: 267–271, 1996.PubMedCrossRefGoogle Scholar
  140. 140.
    Palucha A, Pilc A. On the role of metabotropic glutamate receptors in the mechanisms of action of antidepressants. Pol J Pharmacol 54: 581–586, 2002.PubMedGoogle Scholar
  141. 141.
    Zarate CA Jr, Du J, Quiroz J, Gray NA, Denicoff KD, Singh J, et al. Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann NY Acad Sci 1003: 273–291, 2003.PubMedCrossRefGoogle Scholar
  142. 142.
    Koch M. Micro injection s of the metabotropic glutamate receptor agonist, trans-(+/−)-1-amino-cyclopentane-1,3-dicarboxylate (trans-ACPD) into the amygdala increase the acoustic startle response of rats. Brain Res 629: 176–179, 1993.PubMedCrossRefGoogle Scholar
  143. 143.
    Rodrigues SM, Bauer EP, Farb CR, Schafe GE, LeDoux JE. The group I metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiation in the lateral amygdala. J Neurosci 22: 5219–5229, 2002.PubMedGoogle Scholar
  144. 144.
    Spooren WP, Vassout A, Neijt HC, Kuhn R, Gasparini F, Roux S, et al. Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295: 1267–1275, 2000.PubMedGoogle Scholar
  145. 145.
    Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E, Palucha A, Gasparini F, Kuhn R, et al. Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 132: 1423–1430, 2001.PubMedCrossRefGoogle Scholar
  146. 146.
    Busse CS, Brodkin J, Tattersall D, Anderson JJ, Warren N, Tehrani L, et al. The behavioral profile of the potent and selective mGlu5 receptor antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethy-nyljpyridine (MTEP) in rodent models of anxiety. Neuropsychopharmacology 29: 1971–1979, 2004.PubMedCrossRefGoogle Scholar
  147. 147.
    Schulz B, Fendt M, Gasparini F, Lingenhohl K, Kuhn R, Koch M. The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 41: 1–7, 2001.PubMedCrossRefGoogle Scholar
  148. 148.
    Pilc A, Klodzinska A, Branski P, Nowak G, Palucha A, Szewczyk B, et al. Multiple MPEP administrations evoke anxiolytic- and antidepressant-like effects in rats. Neuropharmacology 43: 181–187, 2002.PubMedCrossRefGoogle Scholar
  149. 149.
    Brodkin J, Busse C, Sukoff SJ, Varney MA. Anxiolytic-like activity of the mGluR5 antagonist MPEP a comparison with diazepam and buspirone. Pharmacol Biochem Behav 73: 359–366, 2002.PubMedCrossRefGoogle Scholar
  150. 150.
    Bruno V, Copani A, Knopfel T, Kuhn R, Casabona G, Dell’Albani P et al. Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA induced neuronal degeneration in cultured cortical cells. Neuropharmacology 34: 1089–1098, 1995.PubMedCrossRefGoogle Scholar
  151. 151.
    Zahorodna A, Bijak M. An antidepressant-induced decrease in the responsiveness of hippocampal neurons to group I metabotropic glutamate receptor activation. Eur J Pharmacol 386: 173–179, 1999.PubMedCrossRefGoogle Scholar
  152. 152.
    Cartmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75: 889–907, 2000.PubMedCrossRefGoogle Scholar
  153. 153.
    Coplan JD, Mathew SJ, Smith EL, Trost RC, Scharf BA, Martinez J, et al. Effects of LY354740, a novel glutamatergic metabotropic agonist, on nonhuman primate hypothalamic-pituitary-adrenal axis and noradrenergic function. CNS Spectr 6: 607–617, 2001.PubMedGoogle Scholar
  154. 154.
    Shekhar A, Keim SR. LY354740, a potent group II metabotropic glutamate receptor agonist prevents lactate-induced panic-like response in panic-prone rats. Neuropharmacology 39: 1139–1146, 2000.PubMedCrossRefGoogle Scholar
  155. 155.
    Helton DR, Tizzano JP, Monn JA, Schoepp DD, Kallman MJ. Anxiolytic and side-effect profile of LY354740: a potent highly selective, orally active agonist for group II metabotropic glutamate receptors. J Pharmacol Exp Ther 284: 651–660, 1998.PubMedGoogle Scholar
  156. 156.
    Levine LR, Gaydos B, Sheehan DV, Goddard A, Feighner J, Potter WZ, et al. The mGlu2/3 receptor agonist, LY354740, reduces panic anxiety induced by CO2 challenge in patients diagnosed with panic disorder. Neuropharmacology 43: 294–294, 2002.Google Scholar
  157. 157.
    Melendez RI, Gregory ML, Bardo MT, Kalivas PW. Impoverished rearing environment alters metabotropic glutamate receptor expression and function in the prefrontal cortex. Neuropsychopharmacology 29: 1980–1987, 2004.PubMedCrossRefGoogle Scholar
  158. 158.
    Matrisciano F, Storto M, Ngomba RT, Cappuccio I, Caricasole A, Scaccianoce S, et al. Imipramine treatment up-regulates the expression and function of mGlu2/3 metabotropic glutamate receptors in the rat hippocampus. Neuropharmacology 42: 1008–1015, 2002.PubMedCrossRefGoogle Scholar
  159. 159.
    Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281: 1349–1352, 1998.PubMedCrossRefGoogle Scholar
  160. 160.
    Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van Der Putten H. Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 17: 2409–2417, 2003.PubMedCrossRefGoogle Scholar
  161. 161.
    Linden AM, Johnson BG, Peters SC, Shannon HE, Tian M, Wang Y, et al. Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neuropharmacology 43: 251–259, 2002.PubMedCrossRefGoogle Scholar
  162. 162.
    Blasi G, Bertolino A. Imaging genomics and response to treatment with antipsychotics in schizophrenia. NeuroRx 3: 117–130, 2006.PubMedCrossRefGoogle Scholar
  163. 163.
    Coyle JT. The nagging question of the function of N-acetylaspartylglutamate. Neurobiol Dis 4: 231–238, 1997.PubMedCrossRefGoogle Scholar
  164. 164.
    Lyoo IK, Renshaw PF. Magnetic resonance spectroscopy: current and future applications in psychiatric research. Biol Psychiatry 51: 195–207, 2002.PubMedCrossRefGoogle Scholar
  165. 165.
    Bhakoo KK, Pearce D. In vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 74: 254–262, 2000.PubMedCrossRefGoogle Scholar
  166. 166.
    Sanchez-Pernaute R, Garcia-Segura JM, del Barrio Alba A, Viano J, de Yebenes JG. Clinical correlation of striatal 1H MRS changes in Huntington’s disease. Neurology 53: 806–812, 1999.PubMedCrossRefGoogle Scholar
  167. 167.
    Kantarci K, Jack CR Jr. Neuroimaging in Alzheimer disease: an evidence-based review. Neuroimaging Clin N Am 13: 197–209, 2003.PubMedCrossRefGoogle Scholar
  168. 168.
    Sacktor N, Skolasky RL, Ernst T, Mao X, Seines O, Pomper MG, et al. A multicenter study of two magnetic resonance spectroscopy techniques in individuals with HIV dementia. J Magn Reson Imaging 21: 325–333, 2005.PubMedCrossRefGoogle Scholar
  169. 169.
    Kegeles LS, Humaran TJ, Mann JJ. In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiatry 44: 382–398, 1998.PubMedCrossRefGoogle Scholar
  170. 170.
    Auer DP, Putz B, Kraft E, Lipinski B, Schill J, Holsboer F. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 47: 305–313, 2000.PubMedCrossRefGoogle Scholar
  171. 171.
    Breiter HC, Rauch SL, Kwong KK, Baker JR, Weisskoff RM, Kennedy DN, et al. Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch Gen Psychiatry 53: 595–606, 1996.PubMedCrossRefGoogle Scholar
  172. 172.
    Dager SR, Marro KI, Richards TL, Metzger GD. Preliminary application of magnetic resonance spectroscopy to investigate lactate-induced panic. Am J Psychiatry 151: 57–63, 1994.PubMedGoogle Scholar
  173. 173.
    Phan KL, Fitzgerald DA, Cortese BM, Seraji-Bozorgzad N, Tancer ME, Moore GJ. Anterior cingulate neurochemistry in social anxiety disorder: 1H-MRS at 4 Tesla. Neuroreport 16: 183–186, 2005.PubMedCrossRefGoogle Scholar
  174. 174.
    Kegeles LS, Shungu DC, Anjilvel S, Chan S, Ellis SP, Xanthopoulos E, et al. Hippocampal pathology in schizophrenia: magnetic resonance imaging and spectroscopy studies. Psychiatry Res 98: 163–175, 2000.PubMedCrossRefGoogle Scholar
  175. 175.
    Mathew SJ, Shungu DC, Mao X, Smith EL, Perera GM, Kegeles LS, et al. A magnetic resonance spectroscopic imaging study of adult nonhuman primates exposed to early-life stressors. Biol Psychiatry 54: 727–735, 2003.PubMedCrossRefGoogle Scholar
  176. 176.
    Harte MK, Powell SB, Reynolds LM, Swerdlow NR, Geyer MA, Reynolds GP. Reduced N-acetyl-aspartate in the temporal cortex of rats reared in isolation. Biol Psychiatry 56: 296–299, 2004.PubMedCrossRefGoogle Scholar
  177. 177.
    Block W, Bayer TA, Tepest R, Traber F, Rietschel M, Muller DJ, et al. Decreased frontal lobe ratio of N-acetyl aspartate to choline in familial schizophrenia: a proton magnetic resonance spectroscopy study. Neurosci Lett 289: 147–151, 2000.PubMedCrossRefGoogle Scholar
  178. 178.
    Ohrmann P, Siegmund A, Suslow T, Spitzberg K, Kersting A, Arolt V, et al. Evidence for glutamatergic neuronal dysfunction in the prefrontal cortex in chronic but not in first-episode patients with schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 73: 153–157, 2005.PubMedCrossRefGoogle Scholar
  179. 179.
    Goddard AW, Mason GF, Almai A, Rothman DL, Behar KL, Petroff OA, et al. Reductions in occipital cortex GABA levels in panic disorder detected with 1h-magnetic resonance spectroscopy. Arch Gen Psychiatry 58: 556–561, 2001.PubMedCrossRefGoogle Scholar
  180. 180.
    Sanacora G, Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OA, et al. Reduced cortical γ-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 56: 1043–1047, 1999.PubMedCrossRefGoogle Scholar
  181. 181.
    Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL, et al. Subtype specific alterations of γ-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 61: 705–713, 2004.PubMedCrossRefGoogle Scholar
  182. 182.
    Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ. Simultaneous determination of the rates of the TCA cycle, glucose utilization, α-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15: 12–25, 1995.PubMedCrossRefGoogle Scholar
  183. 183.
    Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, et al. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci USA 96: 8235–8240, 1999.PubMedCrossRefGoogle Scholar
  184. 184.
    Boyce S, Wyatt A, Webb JK, O’Donnell R, Mason G, Rigby M, et al. Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology 38: 611–623, 1999.PubMedCrossRefGoogle Scholar
  185. 185.
    Chizh BA. Novel approaches to targeting glutamate receptors for the treatment of chronic pain: review article. Amino Acids 23: 169–176, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc 2006

Authors and Affiliations

  1. 1.Mount Sinai School of Medicine, Department of PsychiatryLaboratory of Clinical PsychobiologyNew York

Personalised recommendations