Neurotherapeutics

, Volume 7, Issue 4, pp 338–353

Functions of astrocytes and their potential as therapeutic targets

Review Article

Summary

Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise—that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review focuses on the supportive roles of astrocytes, a line of study relevant to essentially all acute and chronic neurological diseases, and critically re-evaluates our concepts of the functional properties of astrocytes and relates these functions and properties to the intricate morphology of these cells.

Key Words

Astrocytes potassium buffering pH control receptors transmitter uptake blood flow aquaporins lactate shuttle antioxidant Müller cells ensheathment 

References

  1. 1.
    Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci 2006;29: 547–553.PubMedGoogle Scholar
  2. 2.
    Kettenmann H, Ransom B. The concept of neuroglia: a historical perspective. In: Kettenmann H, Ransom BR, editors. Neuroglia. 2nd ed. New York: Oxford University Press, 2005: 1–16.Google Scholar
  3. 3.
    Nedergaard M, Ransom B, Goldman SA. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 2003;26: 523–530.PubMedGoogle Scholar
  4. 4.
    Somjen GG. Nervenkitt: notes on the history of the concept of neuroglia. Glia 1988;1: 2–9.PubMedGoogle Scholar
  5. 5.
    Kimelberg HK. Supportive or information-processing functions of the mature protoplasmic astrocyte in the mammalian CNS? A critical appraisal. Neuron Glia Biol 2007;3: 181–189.PubMedGoogle Scholar
  6. 6.
    Kimelberg HK. Functions of mature mammalian astrocytes: a current view. Neuroscientist 2010;16: 79–106.PubMedGoogle Scholar
  7. 7.
    Oberheim NA, Takano T, Han X, et al. Uniquely hominid features of adult human astrocytes. J Neurosci 2009;29: 3276–3287.PubMedGoogle Scholar
  8. 8.
    Colombo JA, Reisin HD. Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 2004;1006: 126–131.PubMedGoogle Scholar
  9. 9.
    Luo L, Callaway EM, Svoboda K. Genetic dissection of neural circuits. Neuron 2008;57: 634–660.PubMedGoogle Scholar
  10. 10.
    Fiacco T, Casper K, Sweger E, et al. Molecular approaches for studying astrocytes. In: Parpura V, Haydon PG, editors. Astrocytes in (patho)physiology of the nervous system. New York: Springer, 2009: 383–405.Google Scholar
  11. 11.
    Kimelberg HK. The problem of astrocyte identity. Neurochem Int 2004: 45: 191–202.PubMedGoogle Scholar
  12. 12.
    Kimelberg HK. Water homeostasis in the brain: basic concepts. Neuroscience 2004;129: 851–860.PubMedGoogle Scholar
  13. 13.
    Cahoy JD, Emery B, Kaushal A, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008;28: 264–278.PubMedGoogle Scholar
  14. 14.
    Lovatt D, Sonnewald U, Waagepetersen HS, et al. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 2007;27: 12255–12266.PubMedGoogle Scholar
  15. 15.
    Olsen ML, Sontheimer H. Voltage-activated ion channels in glial cells. In: Kettenmann H, Ransom BR, editors. Neuroglia. 2nd ed. Oxford, New York: Oxford University Press, 2005: 112–130.Google Scholar
  16. 16.
    Houades V, Koulakoff A, Ezan P, Seif I, Giaume C. Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 2008;28: 5207–5217.PubMedGoogle Scholar
  17. 17.
    Henneberger C, Papouin T, Oliet SH, Rusakov DA. Long-term potentiation depends on release of d-serine from astrocytes. Nature 2010;463: 232–236.PubMedGoogle Scholar
  18. 18.
    Zhou M, Xu G, Xie M, et al. TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci 2009;29: 8551–8564.PubMedGoogle Scholar
  19. 19.
    Sontheimer H. Whole-cell patch-clamp recordings. In: Boulton A, Baker GB, Walz W, editors. Patch-clamp applications and protocols. Totowa, NJ: Humana Press, 1995;37–74.Google Scholar
  20. 20.
    Xu G, Wang W, Kimelberg HK, Zhou M. Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions. Glia 2010;58: 481–493.PubMedGoogle Scholar
  21. 21.
    Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 2010;11: 87–99.PubMedGoogle Scholar
  22. 22.
    Kuffler SW, Nicholls JG, Orkand RK. Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 1966;29: 768–787.PubMedGoogle Scholar
  23. 23.
    Picker S, Pieper CF, Goldring S. Glial membrane potentials and their relationship to [K+]o in man and guinea pig. J Neurosurg 1981;55: 347–363.PubMedGoogle Scholar
  24. 24.
    Walz W, Hertz L. Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. J Cereb Blood Flow Metab 1984;4: 301–304.PubMedGoogle Scholar
  25. 25.
    Orkand RK, Nicholls JG, Kuffler SW. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 1966;29: 788–806.PubMedGoogle Scholar
  26. 26.
    Gardner-Medwin AR. Study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol 1983;335: 353–374.PubMedGoogle Scholar
  27. 27.
    Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience 2004;129: 1045–1056.PubMedGoogle Scholar
  28. 28.
    Metea MR, Kofuji P, Newman EA. Neurovascular coupling is not mediated by potassium siphoning from glial cells. J Neurosci 2007;27: 2468–2471.PubMedGoogle Scholar
  29. 29.
    Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 2006;26: 5438–5447.PubMedGoogle Scholar
  30. 30.
    D’Ambrosio R, Gordon DS, Winn HR. Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol 2002;87: 87–102.PubMedGoogle Scholar
  31. 31.
    Walz W, Wuttke WA. Independent mechanisms of potassium clearance by astrocytes in gliotic tissue. J Neurosci Res 1999;56: 595–603.PubMedGoogle Scholar
  32. 32.
    Walz W. Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 2000;36: 291–300.PubMedGoogle Scholar
  33. 33.
    Bergles DE, Jahr CE. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 1997;19: 1297–1308.PubMedGoogle Scholar
  34. 34.
    Magistretti PJ, Pellerin L. Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 1999;14: 177–182.PubMedGoogle Scholar
  35. 35.
    Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 2006;26: 2673–2683.PubMedGoogle Scholar
  36. 36.
    Fischer W, Appelt K, Grohmann M, Franke H, Nörenberg W, Illes P. Increase of intracellular Ca2+ by P2X and P2Y receptor-subtypes in cultured cortical astroglia of the rat. Neuroscience 2009;160: 767–783.PubMedGoogle Scholar
  37. 37.
    Walz W. Mechanism of rapid K+-induced swelling of mouse astrocytes. Neurosci Lett 1992;135: 243–246.PubMedGoogle Scholar
  38. 38.
    Hodgkin AL, Horowicz P. Influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol 1959;148: 127–160.PubMedGoogle Scholar
  39. 39.
    Amzica F, Massimini M. Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex. Cereb Cortex 2002;12: 1101–1113.PubMedGoogle Scholar
  40. 40.
    Tschirgi RD. The blood-brain barrier. In: Windle WF, editor. Biology of neuroglia. Springfield, IL: Charles C. Thomas, 1958: 130–138.Google Scholar
  41. 41.
    Kimelberg HK, Stieg PE, Mazurkiewicz JE. Immunocytochemical and biochemical analysis of carbonic anhydrase in primary astrocyte cultures from rat brain. J Neurochem 1982;39: 734–742.PubMedGoogle Scholar
  42. 42.
    Kimelberg HK, Biddlecome S, Bourke RS. SITS-inhibitable Cl transport and Na+-dependent H+ production in primary astroglial cultures. Brain Res 1979;173: 111–124.PubMedGoogle Scholar
  43. 43.
    Kimelberg HK. Active accumulation and exchange transport of chloride in astroglial cells in culture. Biochim Biophys Acta 1981;646: 179–184.PubMedGoogle Scholar
  44. 44.
    Rose CR, Ransom BR. pH regulation in mammalian glia. In: Kaila K, Ransom BR, editors. pH and brain function. New York: Wiley-Liss, 1998: 253–276.Google Scholar
  45. 45.
    Schmitt BM, Berger UV, Douglas RM, et al. Na/HCO3 cotransporters in rat brain: expression in glia, neurons, and choroid plexus. J Neurosci 2000;20: 6839–6848.PubMedGoogle Scholar
  46. 46.
    Majumdar D, Maunsbach AB, Shacka JJ, et al. Localization of electrogenic Na/bicarbonate cotransporter NBCel variants in rat brain. Neuroscience 2008;155: 818–832.PubMedGoogle Scholar
  47. 47.
    Parker MD, Bouyer P, Daly CM, Boron WF. Cloning and characterization of novel human SLC4A8 gene products encoding Na+-driven C1/HCO3 exchanger variants NDCBE-A, -C, and -D. Physiol Genomics 2008;34: 265–276.PubMedGoogle Scholar
  48. 48.
    Pellerin L, Magistretti PJ. Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 2004;10: 53–62.PubMedGoogle Scholar
  49. 49.
    Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 2004;287: R502-R516.PubMedGoogle Scholar
  50. 50.
    Krnjević K, Schwartz S. Some properties of unresponsive cells in the cerebral cortex. Exp Brain Res 1967;3: 306–319.PubMedGoogle Scholar
  51. 51.
    Constanti A, Galvan M. Amino acid evoked depolarization of electrically inexcitable (neuroglial?) cells in the guinea pig olfactory cortex slice. Brain Res 1978;153: 183–187.PubMedGoogle Scholar
  52. 52.
    Bowman CL, Kimelberg HK. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 1984;311: 656–659.PubMedGoogle Scholar
  53. 53.
    Kettenmann H, Backus KH, Schachner M. Aspartate, glutamate and γ-aminobutyric acid depolarize cultured astrocytes. Neurosci Lett 1984;52: 25–29.PubMedGoogle Scholar
  54. 54.
    Kimelberg HK. Glial cell receptors. New York, NY: Raven Press, 1988.Google Scholar
  55. 55.
    Zhou M, Kimelberg HK. Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J Neurosci 2001;21: 7901–7908.PubMedGoogle Scholar
  56. 56.
    Iino M, Goto K, Kakegawa W, et al. Glia—synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 2001;292: 926–929.PubMedGoogle Scholar
  57. 57.
    Hertz L, Peng L, Dienel GA. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 2007;27: 219–249.PubMedGoogle Scholar
  58. 58.
    Berl S, Lajtha A, Waelsch H. Amino acid and protein metabolism. VI: Cerebral compartments of glutamic acid metabolism. J Neurochem 1961;7: 186–197.Google Scholar
  59. 59.
    Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996;16: 675–686.PubMedGoogle Scholar
  60. 60.
    Minelli A, Brecha NC, Karschin C, DeBiasi S, Conti F. GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J Neurosci 1995;15: 7734–7746.PubMedGoogle Scholar
  61. 61.
    Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F. GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 1996;16: 6255–6264.PubMedGoogle Scholar
  62. 62.
    Ribak CE, Tong WM, Brecha NC. GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 1996;367: 595–606.PubMedGoogle Scholar
  63. 63.
    Håberg A, Qu H, Saether O, Unsgård G, Haraldseth O, Sonnewald U. Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival. J Cereb Blood Flow Metab 2001;21: 1451–1463.PubMedGoogle Scholar
  64. 64.
    Yang Y, Rothstein JD. Specialized neurotransmitter transporters in astrocytes. In: Parpura V, Haydon PG, editors. Astrocytes in (patho)physiology of the nervous system. New York: Springer. 2009;69–106.Google Scholar
  65. 65.
    Warskulat U, Heller-Stilb B, Oermann E, et al. Phenotype of the taurine transporter knockout mouse. Methods Enzymol 2007;428: 439–458.PubMedGoogle Scholar
  66. 66.
    Rothstein JD, Patel S, Regan MR, et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005;433: 73–77.PubMedGoogle Scholar
  67. 67.
    Thöne-Reineke C, Neumann C, Namsolleck P, et al. The β-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke. J Hypertens 2008;26: 2426–2435.PubMedGoogle Scholar
  68. 68.
    Lipski J, Wan CK, Bai JZ, Pi R, Li D, Donnelly D. Neuroprotective potential of ceftriaxone in in vitro models of stroke. Neuroscience 2007;146: 617–629.PubMedGoogle Scholar
  69. 69.
    Reichenbach A, Wolburg H. Structural association of astrocytes with neurons and vasculature: defining territorial boundaries. In: Parpura V, Haydon PG, editors. Astrocytes in (patho)physiology of the nervous system. New York: Springer, 2009: 251–286.Google Scholar
  70. 70.
    Zonta M, Angulo MC, Gobbo S, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 2003;6: 43–50.PubMedGoogle Scholar
  71. 71.
    Anderson CM, Nedergaard M. Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci 2003;26: 340–344.PubMedGoogle Scholar
  72. 72.
    Traystman RJ. Regulation of cerebral blood flow by carbon dioxide. In: Welch KMA, Caplan LR, Reis DJ, Siesjö BK, Weir B, editors. Primer on cerebrovascular diseases. San Diego/London: Academic Press, 1997: 55–58.Google Scholar
  73. 73.
    Edvinsson L, MacKenzie ET, McCulloch J. Vascular smooth muscle reactivity in vitro and in situ. In: Cerebral blood flow and metabolism. New York: Raven Press, 1993: 113–141.Google Scholar
  74. 74.
    Abbott NJ. Astrocyte—endothelial interactions and blood—brain barrier permeability. J Anat 2002;200: 629–638.PubMedGoogle Scholar
  75. 75.
    Pardridge WM. Drug delivery to the brain. J Cereb Blood Flow Metab 1997;17: 713–731.PubMedGoogle Scholar
  76. 76.
    Paulson OB, Newman EA. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 1987;237: 896–898.PubMedGoogle Scholar
  77. 77.
    Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008;456: 745–749.PubMedGoogle Scholar
  78. 78.
    Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 2009;32: 160–169.PubMedGoogle Scholar
  79. 79.
    Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 2006;100: 328–335.PubMedGoogle Scholar
  80. 80.
    Takano T, Tian GF, Peng W, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006;9: 260–267.PubMedGoogle Scholar
  81. 81.
    Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 2007;10: 1369–1376.PubMedGoogle Scholar
  82. 82.
    Schummers J, Yu H, Sur M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 2008;320: 1638–1643.PubMedGoogle Scholar
  83. 83.
    Landis DMD, Reese TS. Membrane structure in mammalian astrocytes: a review of freeze fracture studies on adult, developing, reactive and cultured astrocytes. J Exp Biol 1981;95: 35–48.PubMedGoogle Scholar
  84. 84.
    Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci 2003;4: 991–1001.PubMedGoogle Scholar
  85. 85.
    Newman EA. High potassium conductance in astrocyte endfeet. Science 1986;233: 453–454.PubMedGoogle Scholar
  86. 86.
    Aitken PG, Borgdorff AJ, Juta AJA, Kiehart DP, Somjen GG, Wadman WJ. Volume changes induced by osmotic stress in freshly isolated rat hippocampal neurons. Pflugers Arch 1998;436: 991–998.PubMedGoogle Scholar
  87. 87.
    Badaut J, Brunet JF, Regli L. Aquaporins in the brain: from aqueduct to “multi-duct”. Metab Brain Dis 2007;22: 251–263.PubMedGoogle Scholar
  88. 88.
    Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 2000;6: 159–63.PubMedGoogle Scholar
  89. 89.
    Verkman AS. Knock-out models reveal new aquaporin functions. Handb Exp Pharmacol 2009;(190):359–381.Google Scholar
  90. 90.
    Verkman AS. Water permeability measurement in living cells and complex tissues. J Membr Biol 2000;173: 73–87.PubMedGoogle Scholar
  91. 91.
    Amiry-Moghaddam M, Otsuka T, Hurn PD, et al. An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 2003;100: 2106–2111.PubMedGoogle Scholar
  92. 92.
    Iacobas DA, Scemes E, Spray DC. Gene expression alterations in connexin null mice extend beyond the gap junction. Neurochem Int 2004;45: 243–250.PubMedGoogle Scholar
  93. 93.
    Magistretti PJ, Sorg O, Naichen Y, Pellerin L, de Rham S, Martin JL. Regulation of astrocyte energy metabolism by neurotransmitters. Renal Physiol Biochem 1994;17: 168–171.PubMedGoogle Scholar
  94. 94.
    Pellerin L, Magistretti PJ. Food for thought: challenging the dogmas. J Cereb Blood Flow Metab 2003;23: 1282–1286.PubMedGoogle Scholar
  95. 95.
    Voutsinos-Porche B, Bonvento G, Tanaka K, et al. Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 2003;37: 275–286.PubMedGoogle Scholar
  96. 96.
    Golgi C. Sulla fina anatomia degli organi centrali del sistema nervosa [In Italian]. Riv Sper Fremiat Med Leg Alienazione Ment 1885;11: 72–123.Google Scholar
  97. 97.
    Ramóny Cajal S. Contributión al conocimiento de la neuroglia del cerebro humano [Contribution to the understanding of neuroglia in the human cerebrum] [In Spanish]. Trab Lab Invest Biol Univ Madrid 1913;11: 255–315.Google Scholar
  98. 98.
    Virgintino D, Monaghan P, Robertson D, et al. An immunohistochemical and morphometric study on astrocytes and microvasculature in the human cerebral cortex. Histochem J 1997;29: 655–660.PubMedGoogle Scholar
  99. 99.
    Leino RL, Gerhart DZ, van Bueren AM, McCall AL, Drewes LR. Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res 1997;49: 617–626.PubMedGoogle Scholar
  100. 100.
    Sibson NR, Shen J, Mason GF, Rothman DL, Behar KL, Shulman RG. Functional energy metabolism: in vivo 13C-NMR spectroscopy evidence for coupling of cerebral glucose consumption and glutamatergic neuronal activity. Dev Neurosci 1998;20: 321–330.PubMedGoogle Scholar
  101. 101.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 3rd ed. Oxford, New York: Oxford University Press, 1999.Google Scholar
  102. 102.
    Aschner M. Neuron-astrocyte interactions: implications for cellular energetics and antioxidant levels. Neurotoxicology 2000;21: 1101–1107.PubMedGoogle Scholar
  103. 103.
    Anderson MF, Blomstrand F, Blomstrand C, Eriksson PS, Nilsson M. Astrocytes and stroke: networking for survival? Neurochem Res 2003;28: 293–305.PubMedGoogle Scholar
  104. 104.
    Franze K, Grosche J, Skatchkov SN, et al. Müller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci U S A 2007;104: 8287–8292.PubMedGoogle Scholar
  105. 105.
    Hatton GI. Astroglial modulation of neurotransmitter peptide release from the neurohypophysis: present status. J Chem Neuroanat 1999;16: 203–221.PubMedGoogle Scholar
  106. 106.
    Brès V, Hurbin A, Duvoid A, et al. Pharmacological characterization of volume-sensitive, taurine permeable anion channels in rat supraoptic glial cells. Br J Pharmacol 2000;130: 1976–1982.PubMedGoogle Scholar
  107. 107.
    Dierig S. Extending the neuron doctrine: Carl Ludwig Schleich (1859–1922) and his reflections on neuroglia at the inception of the neural-network concept in 1894. Trends Neurosci 1994;17: 449–452.PubMedGoogle Scholar
  108. 108.
    Bushong EA, Martone ME, Ellisman MH. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 2004;22: 73–86.PubMedGoogle Scholar
  109. 109.
    Ogata K, Kosaka T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 2002;113: 221–233.PubMedGoogle Scholar
  110. 110.
    Grosche J, Matyash V, Möller T, Verkhratsky A, Reichenbach A, Kettenmann H. Microdomains for neuron—glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 1999;2: 139–143.PubMedGoogle Scholar
  111. 111.
    Hille B. Ionic channels of excitable membranes. 2nd ed. Sunderland, MA: Sinauer Associates, 1992.Google Scholar
  112. 112.
    Yamanaka K, Boillee S, Roberts EA, et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci U S A 200–105:7594–7599.Google Scholar
  113. 113.
    Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009;32: 421–431.PubMedGoogle Scholar
  114. 114.
    Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 2006;86: 1009–1031.PubMedGoogle Scholar
  115. 115.
    Lothman EW, Somjen GG. Extracellular potassium activity intracellular and extracellular potential responses in the spinal cord. J Physiol 1975;252: 115–136.PubMedGoogle Scholar
  116. 116.
    Dietzel I, Heinemann U, Hofmeier G, Lux HD. Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentrations. Exp Brain Res 1980;40: 432–439.PubMedGoogle Scholar
  117. 117.
    Kimelberg HK. Anisotonic media and glutamate-induced ion transport and volume responses in primary astrocyte cultures. J Physiol (Paris) 1987;82: 294–303.Google Scholar
  118. 118.
    McGrail KM, Sweadner KJ. Immunofluorescent localization of two different Na, K-ATPases in the rat retina and in identified dissociated retinal cells. J Neurosci 1986;6: 1272–1283.PubMedGoogle Scholar
  119. 119.
    Leis JA, Bekar LK, Walz W. Potassium homeostasis in the ischemic brain. Glia 2005;50: 407–416.PubMedGoogle Scholar
  120. 120.
    Somjen GG. Ions in the brain: normal function, seizures, and stroke. Oxford, New York: Oxford University Press, 2004.Google Scholar
  121. 121.
    Deitmer JW, Rose CR. Ion changes and signalling in perisynaptic glia. Brain Res Rev 2010;63: 113–29.PubMedGoogle Scholar
  122. 122.
    Obara M, Szeliga M, Albrecht J. Regulation of pH in the mammalian central nervous system under normal and pathological conditions: facts and hypotheses. Neurochem Int 2008;52: 905–919.PubMedGoogle Scholar
  123. 123.
    Chesler M. Regulation and modulation of pH in the brain. Physiol Rev 2003;83: 1183–1221.PubMedGoogle Scholar
  124. 124.
    van Calker D, Muiller M, Hamprecht B. In: Meisami E, Brazier MAB, editors. Neural growth and differentiation. Int Brain Res Org Monogr Ser 5. New York: Raven Press, 1979: 11–25.Google Scholar
  125. 125.
    McCarthy KD, de Vellis J. α-Adrenergic receptor modulation of β-adrenergic, adenosine and prostaglandin E-1 increased adenosine 3′:5′-cyclic monophosphate levels in primary cultures of glia. J Cyclic Nucleotide Res 1978;4: 15–26.PubMedGoogle Scholar
  126. 126.
    Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 2007;13: 54–63.PubMedGoogle Scholar
  127. 127.
    Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005;6: 626–640.PubMedGoogle Scholar
  128. 128.
    Newman EA. Glial modulation of synaptic transmission in the retina. Glia 2004;47: 268–274.PubMedGoogle Scholar
  129. 129.
    Martinez-Hernandez A, Bell K, Norenberg MD. Glutamine synthetase: glial localization in brain. Science 1977;195: 1356–1358.PubMedGoogle Scholar
  130. 130.
    Schousboe A, Hertz L, Svenneby G. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem Res 1977;2: 217–229.Google Scholar
  131. 131.
    Levi G, Wilkin GP, Ciotti MT, Johnstone S. Enrichment of differentiated, stellate astrocytes in cerebellar intemeuron cultures as studied by GFAP immunofluorescence and autoradiographic uptake patterns with [3H]aspartate and [3H]GABA. Brain Res 1983;312: 227–241.PubMedGoogle Scholar
  132. 132.
    Sattler R, Rothstein JD. Regulation and dysregulation of glutamate transporters. Handb Exp Pharmacol 2006;175: 277–303.PubMedGoogle Scholar
  133. 133.
    Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 2000;32: 1–14.PubMedGoogle Scholar
  134. 134.
    Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 1997;17: 171–180.PubMedGoogle Scholar
  135. 135.
    King LS, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 2004;5: 687–698.PubMedGoogle Scholar
  136. 136.
    Pellerin L, Magistretti PJ. Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ ATPase. Dev Neurosci 1996;18: 336–342.PubMedGoogle Scholar
  137. 137.
    Magistretti PJ. Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nute 2009;90: 875S-880S.Google Scholar
  138. 138.
    Dienel GA, Cruz NF. Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 2004;45: 321–351.PubMedGoogle Scholar
  139. 139.
    Jou MJ. Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes. Adv Drug Deliv Rev 2008;60: 1512–1526.PubMedGoogle Scholar
  140. 140.
    Hatton GI, Bicknell RJ, Hoyland J, Bunting R, Mason WT. Arginine vasopressin mobilises intracellular calcium via V1-receptor activation in astrocytes (pituicytes) cultured from adult rat neural lobes. Brain Res 1992;588: 75–83.PubMedGoogle Scholar
  141. 141.
    Deleuze C, Duvoid A, Hussy N. Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J Physiol 1998;507: 463–471.PubMedGoogle Scholar
  142. 142.
    Theodosis DT, Poulain DA, Oliet SHR. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 2008;88: 983–1008.PubMedGoogle Scholar
  143. 143.
    Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium: homeostasis and signaling function. Physiol Rev 1998;78: 99–141.PubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Ordway Research InstituteAlbany
  2. 2.Center for Translational Neuromedicine, Department of NeurosurgeryUniversity of Prochester Medical SchoolRochester

Personalised recommendations