Neurotherapeutics

, Volume 7, Issue 2, pp 183–190

Nitric oxide-related drag targets in headache

Review Article

Summary

Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so-called delayed headache that fulfils criteria for migraine without aura in migraine sufferers. Blockade of nitric oxide synthases (NOS) by L-nitromonomethylarginine effectively treats attacks of migraine without aura. Similar results have been obtained for chronic the tension-type headache and cluster headache. Inhibition of the breakdown of cyclic guanylate phosphate (cGMP) also provokes migraine in sufferers, indicating that cGMP is the effector of NO-induced migraine. Similar evidence suggests an important role of NO in the tension-type headache and cluster headache. These very strong data from human experimentation make it highly likely that antagonizing NO effects will be effective in the treatment of primary headaches. Nonselective NOS inhibitors are likely to have side effects whereas selective compounds are now in early clinical trials. Antagonizing the rate limiting cofactor tetrahydrobiopterin seems another very likely new treatment. It is more unlikely that antagonism of cGMP or its formation will be feasible, but augmenting its breakdown via phosphodiesterase activation is a possibility, as well as other ways of inhibiting the NO-cGMP pathway.

Key Words

Cerebral circulation drug development experimental headache headache nitroglycerin pain 

References

  1. 1.
    Olesen J, Thomsen LL, Iversen H. Nitric-oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol Sci 1994;15: 149–153.CrossRefPubMedGoogle Scholar
  2. 2.
    Lassen LH, Ashina M, Christiansen I, Ulrich V, Olesen J. Nitric oxide synthase inhibition in migraine. Lancet 1997;349: 401–402.CrossRefPubMedGoogle Scholar
  3. 3.
    Marsh N, Marsh A. A short history of nitroglycerine and nitric oxide in pharmacology and physiology. Clin Exp Pharmacol Physiol 2000;27: 313–319.CrossRefPubMedGoogle Scholar
  4. 4.
    Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 2006;147: S193-S201.CrossRefPubMedGoogle Scholar
  5. 5.
    Bredt DS. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res 1999;31: 577–596.CrossRefPubMedGoogle Scholar
  6. 6.
    Edvinsson L, Krause D. Cerebral blood flow and metabolism. Philadelphia: Lippincott, Williams and Wilkins, 2002.Google Scholar
  7. 7.
    Messlinger K, Suzuki A, Pawlak M, Zehnter A, Schmidt RF. Involvement of nitric oxide in the modulation of dural arterial blood flow in the rat. Br J Pharmacol 2000;129: 1397–1404.CrossRefPubMedGoogle Scholar
  8. 8.
    Moncada S, Higgs EA. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol 2006;(176 Pt 1):213–254.Google Scholar
  9. 9.
    Edvinsson L, Mulder H, Goadsby PJ, Uddman R. Calcitonin generelated peptide and nitric oxide in the trigeminal ganglion: Cerebral vasodilatation from trigeminal nerve stimulation involves mainly calcitonin gene-related peptide. J Auton Nerv Syst 1998;70: 15–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Ayajiki K, Fujioka H, Okamura T, Toda N. Relatively selective neuronal nitric oxide synthase inhibition by 7-nitroindazole in monkey isolated cerebral arteries. Eur J Pharmacol 2001;6;423: 179–183.Google Scholar
  11. 11.
    Toda N. Mediation by nitric-oxide of neurally-induced human cerebral-artery relaxation. Experientia 1993;49: 51–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Toda N, Okamura T. The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 2003;55: 271–324.CrossRefPubMedGoogle Scholar
  13. 13.
    Toda N, Ayajiki K, Tanaka T, Okamura T. Preganglionic and postganglionic neurons responsible for cerebral vasodilation mediated by nitric oxide in anesthetized dogs. J Cereb Blood Flow Metab 2000;20: 700–708.CrossRefPubMedGoogle Scholar
  14. 14.
    Dahl A, Russell D, Nyberg-Hansen R, Rootwelt K. Cluster headache: transcranial Doppler ultrasound and rCBF studies. Cephalalgia 1990;10: 87–94.CrossRefPubMedGoogle Scholar
  15. 15.
    Lassen LH, Christiansen I, Iversen HK, Jansen-Olesen I, Olesen J. The effect of nitric oxide synthase inhibition on histamine induced headache and arterial dilatation in migraineurs. Cephalalgia 2003;23: 877–886.CrossRefPubMedGoogle Scholar
  16. 16.
    Lassen L, Sperling B, Andersen A, Olesen J. The effect of i.v. L-NG methylarginine hydrochloride (L-NMMA: 546C88) on basal and acetazolamide (Diamox) induced changes of blood velocity in cerebral arteries and regional cerebral blood flow in man. Cephalalgia 2005;25: 344–352.CrossRefPubMedGoogle Scholar
  17. 17.
    Fabricius M, Lauritzen M. Examination of the role of nitric-oxide for the hypercapnic rise of cerebral blood-flow in rats. Am J Physiol 1994;266: H1457-H1464.PubMedGoogle Scholar
  18. 18.
    Fabricius M, Akgoren N, Lauritzen M. Arginine nitric-oxide pathway and cerebrovascular regulation in cortical spreading depression. Am J Physiol Heart Circ Physiol 1995;38: H23-H29.Google Scholar
  19. 19.
    Berger RJ, Zuccarello M, Keller JT. Nitric-oxide synthase immunoreactivity in the rat dura-mater. Neuroreport 1994;5: 519–521.CrossRefPubMedGoogle Scholar
  20. 20.
    Nemade RV, Lewis AI, Zuccarello M, Keller JT. Immunohistochemical localization of endothelial nitric-oxide synthase in vessels of the dura-mater of the Sprague-Dawley rat. Neurosci Lett 1995;197: 78–80.CrossRefPubMedGoogle Scholar
  21. 21.
    Gozalov A, Jansen-Olesen I, Klaerke D, Olesen J. Role of BKCa channels in cephalic vasodilation induced by CGRP, NO and transcranial electrical stimulation in the rat. Cephalalgia 2007;27: 1120–1127.CrossRefPubMedGoogle Scholar
  22. 22.
    Johnson KW, Nelson DL, Dieckman DK, et al. Neurogenic dural protein extravasation induced by meta-chlorophenylpiperazine (mCPP) involves nitric oxide and 5-HT2B receptor activation. Cephalalgia 2003;23: 117–123.CrossRefPubMedGoogle Scholar
  23. 23.
    Iversen HK. N-Acetylcysteine enhances nitroglycerin-induced headache and cranial arterial responses. Clin Pharmacol Ther 1992;52: 125–133.CrossRefPubMedGoogle Scholar
  24. 24.
    De Col R, Koulchitsky SV, Messlinger KB. Nitric oxide synthase inhibition lowers activity of neurons with meningeal input in the rat spinal trigeminal nucleus. Neuroreport 2003;10: 229–232.Google Scholar
  25. 25.
    Hoskin KL, Bulmer DC, Goadsby PJ. Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett 1999;266: 173–176.CrossRefPubMedGoogle Scholar
  26. 26.
    Lambert GA, Hoskin KL, Zagami AS. Nitrergic and glutamatergic neuronal mechanisms at the trigeminovascular first-order synapse. Neuropharmacology 2004;47: 92–105.CrossRefPubMedGoogle Scholar
  27. 27.
    Jones MG, Lever I, Bingham S, Read S, McMahon SB, Parsons A. Nitric oxide potentiates response of trigeminal neurones to dural or facial stimulation in the rat. Cephalalgia 2001;21: 643–655.CrossRefPubMedGoogle Scholar
  28. 28.
    Koulchitsky S, Fischer MJM, De Col R, Schlechtweg PM, Messlinger K. Biphasic response to nitric oxide of spinal trigeminal neurons with meningeal input in rat-possible implications for the pathophysiology of headaches. J Neurophysiol 2004;92: 1320–1328.CrossRefPubMedGoogle Scholar
  29. 29.
    Iversen HK, Nielsen TH, Garre K, Tfelthansen P, Olesen J. Dose-dependent headache response and dilation of limb and extracranial arteries after 3 doses of 5-isosorbide-mononitrate. Eur J Clin Pharmacol 1992;42: 31–35.CrossRefPubMedGoogle Scholar
  30. 30.
    Olesen J, Thomsen LL, Lassen LH, Olesen IJ. The nitric-oxide hypothesis of migraine, and other vascular headaches. Cephalalgia 1995;15: 94–100.CrossRefPubMedGoogle Scholar
  31. 31.
    Sicuteri F, Delbene E, Poggioni M, Bonazzi A. Unmasking latent dysnociception in healthy-subjects. Headache 1987;27: 180–185.CrossRefPubMedGoogle Scholar
  32. 32.
    Iversen HK, Olesen J, Tfelthansen P. Intravenous nitroglycerin as an experimental-model of vascular headache—basic characteristics. Pain 1989;38: 17–24.CrossRefPubMedGoogle Scholar
  33. 33.
    Iversen HK, Nielsen TH, Tfelthansen P, Olesen J. Lack of tolerance of headache and radial artery diameter during a 7 hour intravenous-infusion of nitroglycerin. Eur J Clin Pharmacol 1993;44: 47–50.CrossRefPubMedGoogle Scholar
  34. 34.
    Christiansen I, Daugaard D, Thomsen LL, Olesen J. Glyceryl trinitrate induced headache in migraineurs: relation to attack frequency. Eur J Neurol 2000;7: 405–411.CrossRefPubMedGoogle Scholar
  35. 35.
    Christiansen I, Thomsen LL, Daugaard D, Ulrich V, Olesen J. Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia 1999;19: 660–667.CrossRefPubMedGoogle Scholar
  36. 36.
    Afridi SK, Kaube H, Goadsby PJ. Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain 2004;110: 675–680.CrossRefPubMedGoogle Scholar
  37. 37.
    Sances G, Tassorelli C, Pucci E, Ghiotto N, Sandrini G, Nappi G. Reliability of the nitroglycerin provocative test in the diagnosis of neurovascular headaches. Cephalalgia 2004;24: 110–119.CrossRefPubMedGoogle Scholar
  38. 38.
    Olesen J, Friberg L, Olsen TS, et al. Timing and topography of cerebral blood-flow, aura, and headache during migraine attacks. Ann Neurol 1990;28: 791–798.CrossRefPubMedGoogle Scholar
  39. 39.
    Thomsen LL. Investigations into the role of nitric oxide and the large intracranial arteries in migraine headache. Cephalalgia 1997;17: 873–895.CrossRefPubMedGoogle Scholar
  40. 40.
    Thomsen LL, Brennum J, Iversen HK, Olesen J. Effect of a nitric oxide donor (glyceryl trinitrate) on nociceptive thresholds in man. Cephalalgia 1996;16: 169–174.CrossRefPubMedGoogle Scholar
  41. 41.
    Serrano-Duenas M. High altitude headache. A prospective study of its clinical characteristics. Cephalalgia 2005;25: H10–1116.CrossRefGoogle Scholar
  42. 42.
    Mansoor JK, Morrissey BM, Walby WF, et al. L-arginine supplementation enhances exhaled NO, breath condensate VEGF, and headache at 4,342 m. High Alt Med Biol 2005;6: 289–300.CrossRefPubMedGoogle Scholar
  43. 43.
    Arregui A, Leonvelarde F, Cabrera J, Paredes S, Vizcarra D, Umeres H. Migraine, polycythemia and chronic mountain-sickness. Cephalalgia 1994;14: 339–341.CrossRefPubMedGoogle Scholar
  44. 44.
    Christiansen I, Iversen HK, Olesen J. Headache characteristics during the development of tolerance to nitrates: pathophysiological implications. Cephalalgia 2000;20: 437–444.CrossRefPubMedGoogle Scholar
  45. 45.
    Thomsen LL, Iversen HK, Brinck TA, Olesen J. Arterial super-sensitivity to nitric oxide (nitroglycerin) in migraine sufferers. Cephalalgia 1993;13: 395–399.CrossRefPubMedGoogle Scholar
  46. 46.
    Bellantonio P, Micieli G, Buzzi MG, et al. Haemodynamic correlates of early and delayed responses to sublingual administration of isosorbide dinitrate in migraine patients: a transcranial Doppler study. Cephalalgia 1997;17: 183–187.CrossRefPubMedGoogle Scholar
  47. 47.
    Lassen LH, Thomsen LL, Olesen J. Histamine induces migraine via the H-1-receptor. Support for the no hypothesis of migraine. Neuroreport 1995;6: 1475–1479.CrossRefPubMedGoogle Scholar
  48. 48.
    Lassen LH, Thomsen LL, Krause C, Iversen HK, Olesen J. Histamine-1 receptor blockade does not prevent nitroglycerin induced migraine—support for the NO-hypothesis of migraine. Eur J Clin Pharmacol 1996;49: 335–339.CrossRefPubMedGoogle Scholar
  49. 49.
    Krause C, Thomsen LL, Jacobsen TB, Olesen J. The phosphodiesterase 5 inhibitor sildenafil has no effect on cerebral blood flow or blood velocity, but nevertheless induces headache in healthy subjects. J Cereb Blood Flow Metab 2002;22: 1124–1131.CrossRefGoogle Scholar
  50. 50.
    Krause C, Thomsen LL, Birk S, Olesen J. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain 2003;126: 241–247.CrossRefGoogle Scholar
  51. 51.
    Olesen J, Iversen HK, Thomsen LL. Nitric-oxide supersensitivity—a possible molecular mechanism of migraine pain. Neuroreport 1993;4: 1027–1030.CrossRefPubMedGoogle Scholar
  52. 52.
    Ashina M, Bendtsen L, Jensen R, Olesen J. Nitric oxide-induced headache in patients with chronic tension-type headache. Brain 2000;123: 1830–1837.CrossRefPubMedGoogle Scholar
  53. 53.
    Ashina M, Bendtsen L, Jensen R, Sakai F, Olesen J. Possible mechanisms of glyceryl-trinitrate-induced immediate headache in patients with chronic tension-type headache. Cephalalgia 2000;20: 919–924.CrossRefPubMedGoogle Scholar
  54. 54.
    Ashina M, Simonsen H, Bendtsen L, Jensen R, Olesen J. Glyceryl trinitrate may trigger endogenous nitric oxide production in patients with chronic tension-type headache. Cephalalgia 2004: 24: 967–972.CrossRefPubMedGoogle Scholar
  55. 55.
    Ekbom K. Nitrolglycerin as a provocative agent in cluster headache. Arch Neurol 1968;19: 487–493.PubMedGoogle Scholar
  56. 56.
    Ekbom K, Sjostrand C, Svensson DA, Waldenlind E. Periods of cluster headache induced by nitrate therapy and spontaneous remission of angina pectoris during active clusters. Cephalalgia 2004;24: 92–98.CrossRefPubMedGoogle Scholar
  57. 57.
    Christiansen I, Iversen HK, Olesen J. Induction of nitrate tolerance is not a useful treatment in cluster headache. Cephalalgia 2000;20: 445–454.CrossRefPubMedGoogle Scholar
  58. 58.
    May A, Bahra A, Buchel C, Frackowiak RS, Goadsby PJ. Hypothalamic activation in cluster headache attacks. Lancet 1998;352: 275–278.CrossRefPubMedGoogle Scholar
  59. 59.
    Moncada S, Higgs EA. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J 1995;9: 1319–1330.PubMedGoogle Scholar
  60. 60.
    Lassen LH, Ashina M, Christiansen I, et al. Nitric oxide synthase inhibition: a new principle in the treatment of migraine attacks. Cephalalgia 1998;18: 27–32.CrossRefPubMedGoogle Scholar
  61. 61.
    Van Der Kuy PH, Merkus FW, Lohman JJ, ter Berg JW, Hooymans PM. Hydroxocobalamin, a nitric oxide scavenger, in the prophylaxis of migraine: an open, pilot study. Cephalalgia 2002;22: 513–519.CrossRefPubMedGoogle Scholar
  62. 62.
    Ikeda Y, Jimbo H, Shimazu M, Satoh K. Sumatriptan scavenges Superoxide, hydroxyl, and nitric oxide radicals: in vitro electron spin resonance study. Headache 2002;42: 888–892.CrossRefPubMedGoogle Scholar
  63. 63.
    Read SJ, Manning P, McNeil CJ, Hunter AJ, Parsons AA. Effects of sumatriptan on nitric oxide and Superoxide balance during glyceryl trinitrate infusion in the rat. Implications for antimigraine mechanisms. Brain Res 1999;13;847:1–8.Google Scholar
  64. 64.
    Read SJ, Parsons AA. Sumatriptan modifies cortical free radical release during cortical spreading depression—a novel antimigraine action for sumatriptan? Brain Res 2000;7;870:44–53.Google Scholar
  65. 65.
    Wei CC, Wang ZQ, Durra D, et al. The three nitric-oxide synthases differ in their kinetics of tetrahydrobiopterin radical formation, heme-dioxy reduction, and arginine hydroxylation. J Biol Chem 2005;280: 8929–8935.CrossRefPubMedGoogle Scholar
  66. 66.
    Ashina M, Lassen LH, Bendtsen L, Jensen R, Olesen J. Effect of inhibition of nitric oxide synthase on chronic tension-type headache: a randomised crossover trial. Lancet 1999;23;353:287–289.Google Scholar
  67. 67.
    Ashina M. Nitric oxide synthase inhibitors for the treatment of chronic tension-type headache. Expert Opin Pharmacother 2002;3: 395–399.CrossRefPubMedGoogle Scholar
  68. 68.
    Thomsen LL, Kruuse C, Iversen HK, Olesen J. A nitric oxide donor (nitroglycerin) induces genuine migraine attacks. Eur J Neurol 1994;1: 73–80.CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of Copenhagen, Glostrup HospitalGlostrupDenmark

Personalised recommendations