, Volume 7, Issue 1, pp 3–12 | Cite as

Cell death mechanisms and modulation in traumatic brain injury

  • Bogdan A. Stoica
  • Alan I. Faden
Review Article


Cell death after traumatic brain injury (TBI) is a major cause of neurological deficits and mortality. Understanding the mechanisms of delayed post-traumatic cell loss may lead to new therapies that improve outcome. Although TBI induces changes in multiple cell types, mechanisms of neuronal cell death have been the predominant focus. Recent work has emphasized the diversity of neuronal death phenotypes, which have generally been defined by either morphological or molecular changes. This diversity has led to confusing and at times contradictory nomenclature. Here we review the historical basis of proposed definitions of neuronal cell death, with the goal of clarifying critical research questions and implications for therapy in TBI. We believe that both morphological and molecular features must be used to clarify post-traumatic cell death and related therapeutic targets. Further, we underscore that the most effective neuroprotective strategies will need to target multiple pathways to reflect the regional and temporal changes underlying diverse neuronal cell death phenotypes.

Key Words

TBI PCD apoptosis neurons 


  1. 1.
    Eldadah BA, Faden AI. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 2000;17: 811–829.PubMedGoogle Scholar
  2. 2.
    Yu SW, Andrabi SA, Wang H, et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 2006;103: 18314–18319.PubMedGoogle Scholar
  3. 3.
    Formigli L, Papucci L, Tani A, et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 2000;182: 41–49.PubMedGoogle Scholar
  4. 4.
    Majno G, Joris I. Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol 1995;146: 3–15.PubMedGoogle Scholar
  5. 5.
    Rokitansky C. Handbook of general pathological anatomy [Handbuch der allgemeinen pathologischen Anatomie] [In German]. 3 vol. Vienna: Braumüller & Seidel, 1842–1846.Google Scholar
  6. 6.
    Virchow R. Cellular pathology as based upon physiological and pathological histology [Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre] [In German]. Berlin: Hirschwald, 1858; English translation 1860.Google Scholar
  7. 7.
    Weigert C. An experimental and anatomical contribution to the pathology of specific types of inflammation [Ein Experimenteller und anatomischer Beitrag zur Pathologie der specifischen Entzündungsformen] [In German]. Virchows Arch Pathol Anat 1878;72: 461–501.Google Scholar
  8. 8.
    Schmaus H, Albrecht E. On karyorrhexis [Über Karyorrhexis] [In German]. Virchows Arch Pathol Anat 1894;138: 1–80.Google Scholar
  9. 9.
    Amheim G. Coagulation necrosis and atrophy of the cell nucleus [Coagulationsnekrose und Kemschwund] [In German]. Virchows Arch Pathol Anat Physiol Klin Med 1890;120: 367–383.Google Scholar
  10. 10.
    Klebs E. General pathology [Die Allgemeine Pathologie] [In German]. Jena: Gustav Fischer, 1889.Google Scholar
  11. 11.
    Flemming W. On the development of mammalian polar bodies within regressing Graafian follicles [Über die Bildung von Richtungsfiguren in Säugethiereiem beim Untergang Graaf’scher Follikel] [In German]. Arch Anat Entwgesch 1885;221–244.Google Scholar
  12. 12.
    Nissen F. On the behavior of the nuclei in mammary gland cells during secretion [Über das Verhalten der Kerne in den Mich-drüsenzellen bei der Absonderung] [In German]. Arch Mikroskop Anat 1886;26: 337–342.Google Scholar
  13. 13.
    Ströbe H. Toward understanding of various cellular phenomena in tumors [Zur Kenntnis verschiedener cellulärer Vorgänge und Erscheinungen in Geschwülsten] [In German]. Beitr Pathol Anat 1892;11: 1–38.Google Scholar
  14. 14.
    Glücksmann A. Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc 1951;26: 59–86.Google Scholar
  15. 15.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26: 239–257.PubMedGoogle Scholar
  16. 16.
    Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol 1971;105: 13–20.PubMedGoogle Scholar
  17. 17.
    Kerr JF. History of the events leading to the formulation of the apoptosis concept. Toxicology 2002; 181–182: 471–474.PubMedGoogle Scholar
  18. 18.
    Wyllie AH. Death in normal and neoplastic cells. J Clin Pathol Suppl (R Coll Pathol) 1974;7: 35–42.Google Scholar
  19. 19.
    Wyllie AH. Cell death: a new classification separating apoptosis from necrosis. In: Bowen ID, Lockshin RA, editors. Cell death in biology and pathology. London; New York: Chapman & Hall, 1981: 9–34.Google Scholar
  20. 20.
    Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology 1973;7: 253–266.Google Scholar
  21. 21.
    Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 1990;181: 195–213.Google Scholar
  22. 22.
    Trump BF, Mergner WJ. Cell Injury. In: Zweifach BW, Grant L, McCluskey RT, editors. The inflammatory process. New York: Academic Press, 1974: 115–257.Google Scholar
  23. 23.
    Kroemer G, El-Deiry WS, Golstein P, et al.; Nomenclature Committee on Cell Death. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2005;12 Suppl 2: 1463–1467.PubMedGoogle Scholar
  24. 24.
    Majno G, Joris I. Commentary: on the misuse of the term “necrosis”: a step in the right direction. Toxicol Pathol 1999;27: 494.PubMedGoogle Scholar
  25. 25.
    Recklinghausen F v. Investigations of rickets and osteomalacia [Untersuchungen uber Rachitis und Osteomalacie] [In German]. Jena: Gustav Fischer, 1910.Google Scholar
  26. 26.
    Van Cruchten S, Van Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 2002;31: 214–223.PubMedGoogle Scholar
  27. 27.
    Levin S, Bucci TJ, Cohen SM, et al. The nomenclature of cell death: recommendations of an ad hoc Committee of the Society of Toxicologie Pathologists. Toxicol Pathol 1999;27: 484–490.PubMedGoogle Scholar
  28. 28.
    Zychlinsky A, Sansonetti PJ. Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death? Trends Microbiol 1997;5: 201–204.PubMedGoogle Scholar
  29. 29.
    Bredesen DE. Neural apoptosis. Ann Neurol 1995;38: 839–851.PubMedGoogle Scholar
  30. 30.
    Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 1995;92: 7162–7166.PubMedGoogle Scholar
  31. 31.
    Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP, Davies SW. Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 2000;97: 8093–8097.PubMedGoogle Scholar
  32. 32.
    Bittigau P, Sifringer M, Pohl D, et al. Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Ann Neurol 1999;45: 724–735.PubMedGoogle Scholar
  33. 33.
    Lockshin RA, Williams CM. Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 1964; 10: 643–649.Google Scholar
  34. 34.
    Schwartz LM, Smith SW, Jones ME, Osbome BA. Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci U S A 1993;90: 980–984.PubMedGoogle Scholar
  35. 35.
    Sloviter RS. Apoptosis: a guide for the perplexed. Trends Pharmacol Sci 2002;23: 19–24.PubMedGoogle Scholar
  36. 36.
    Bredesen DE. Key note lecture: toward a mechanistic taxonomy for cell death programs. Stroke 2007;38(2 Suppl): 652–660.PubMedGoogle Scholar
  37. 37.
    Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 2000;97: 14376–14381.PubMedGoogle Scholar
  38. 38.
    Dikranian K, Ishimaru MJ, Tenkova T, et al. Apoptosis in the in vivo mammalian forebrain. Neurobiol Dis 2001;8: 359–379.PubMedGoogle Scholar
  39. 39.
    Ishimaru MJ, Ikonomidou C, Tenkova TI, et al. Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurol 1999;408: 461–476.PubMedGoogle Scholar
  40. 40.
    Bayly PV, Dikranian KT, Black EE, et al. Spatiotemporal evolution of apoptotic neurodegeneration following traumatic injury to the developing rat brain. Brain Res 2006;1107: 70–81.PubMedGoogle Scholar
  41. 41.
    Portera-Cailliau C, Rice DL, Martin LJ. Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J Comp Neurol 1997;378: 88–104.PubMedGoogle Scholar
  42. 42.
    Fujikawa DG, Shinmei SS, Zhao S, Aviles ER Jr. Caspase-dependent programmed cell death pathways are not activated in generalized seizure-induced neuronal death. Brain Res 2007;1135: 206–218.PubMedGoogle Scholar
  43. 43.
    Fujikawa DG, Ke X, Trinidad RB, Shinmei SS, Wu A. Caspase-3 is not activated in seizure-induced neuronal necrosis with inter-nucleosomal DNA cleavage. J Neurochem 2002;83: 229–240.PubMedGoogle Scholar
  44. 44.
    Fujikawa DG. Confusion between neuronal apoptosis and activation of programmed cell death mechanisms in acute necrotic insults. Trends Neurosci 2000;23: 410–411.PubMedGoogle Scholar
  45. 45.
    Bredesen DE. Programmed cell death mechanisms in neurological disease. Curr Nol Med 2008; 8: 173–186.Google Scholar
  46. 46.
    Minambres E, Ballesteros MA, Mayorga M, et al. Cerebral apoptosis in severe traumatic brain injury patients: an in vitro, in vivo, and postmortem study. J Neurotrauma 2008;25: 581–591.PubMedGoogle Scholar
  47. 47.
    Stoica BA, Byrnes KR, Faden AI. Cell cycle activation and CNS injury. Neurotox Res 2009; 16: 221–237.PubMedGoogle Scholar
  48. 48.
    Di Giovanni S, Movsesyan V, Ahmed F, et al. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 2005;102: 8333–8338.PubMedGoogle Scholar
  49. 49.
    Cernak I, Stoica B, Byrnes KR, Di Giovanni S, Faden AI. Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 2005;4: 1286–1293.PubMedGoogle Scholar
  50. 50.
    Hilton GD, Stoica BA, Byrnes KR, Faden AI. Roscovitine reduces neuronal loss, glial activation, and neurologic deficits after brain trauma. J Cereb Blood Flow Metab 2008;28: 1845–1859.PubMedGoogle Scholar
  51. 51.
    Yakovlev AG, Faden AI. Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 2001;24: 131–144.PubMedGoogle Scholar
  52. 52.
    Qiu J, Whalen MJ, Lowenstein P, et al. Upregulation of the Fas receptor death-inducing signaling complex after traumatic brain injury in mice and humans. J Neurosci 2002;22: 3504–3511.PubMedGoogle Scholar
  53. 53.
    Zhang X, Alber S, Watkins SC, et al. Proteolysis consistent with activation of caspase-7 after severe traumatic brain injury in humans. J Neurotrauma 2006;23: 1583–1590.PubMedGoogle Scholar
  54. 54.
    Yakovlev AG, Knoblach SM, Fan L, Fox GB, Goodnight R, Faden AI. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 1997;17: 7415–7424.PubMedGoogle Scholar
  55. 55.
    Lamer SF, Hayes RL, McKinsey DM, Pike BR, Wang KK. Increased expression and processing of caspase-12 after traumatic brain injury in rats. J Neurochem 2004;88: 78–90.Google Scholar
  56. 56.
    Knoblach SM, Nikolaeva M, Huang X, et al. Multiple caspases are activated after traumatic brain injury: evidence for involvement in functional outcome. J Neurotrauma 2002;19: 1155–1170.PubMedGoogle Scholar
  57. 57.
    Knoblach S, Fan L, Huang X, Krajewski S, Reed JC, Faden AI. Activation of caspase 3 and 9 after traumatic brain injury in the rat: treatment with a pan-caspase inhibitor improves outcome. Society Neurosci 2000;26: 2300 (abstract).Google Scholar
  58. 58.
    Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 2000;403: 98–103.PubMedGoogle Scholar
  59. 59.
    Nathoo N, Narotam PK, Agrawal DK, et al. Influence of apoptosis on neurological outcome following traumatic cerebral contusion. J Neurosurg 2004;101: 233–240.PubMedGoogle Scholar
  60. 60.
    Ravagnan L, Rounder T, Kroemer G. Mitochondria, the killer organelles and their weapons. J Cell Physiol 2002;192: 131–137.PubMedGoogle Scholar
  61. 61.
    van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 2002;9: 1031–1042.PubMedGoogle Scholar
  62. 62.
    Daugas E, Nochy D, Ravagnan L, et al. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 2000;476: 118–123.PubMedGoogle Scholar
  63. 63.
    Suzuki S, Chuang LF, Doi RH, Bidlack JM, Chuang RY. Kappaopioid receptors on lymphocytes of a human lymphocytic cell line: morphine-induced up-regulation as evidenced by competitive RT-PCR and indirect immunofluorescence. Int Immunopharmacol 2001;1: 1733–1742.PubMedGoogle Scholar
  64. 64.
    Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 2001;412: 95–99.PubMedGoogle Scholar
  65. 65.
    Vahsen N, Candé C, Brière JJ, et al. AIF deficiency compromises oxidative phosphorylation. EMBO J 2004;23: 4679–4689.PubMedGoogle Scholar
  66. 66.
    Zhang X, Chen J, Graham SH, et al. Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem 2002;82: 181–191.PubMedGoogle Scholar
  67. 67.
    Cregan SP, Dawson VL, Slack RS. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 2004;23: 2785–2796.PubMedGoogle Scholar
  68. 68.
    Candé C, Vahsen N, Garrido C, Kroemer G. Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ 2004;11: 591–595.PubMedGoogle Scholar
  69. 69.
    Hong SJ, Dawson TM, Dawson VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 2004;25: 259–264.PubMedGoogle Scholar
  70. 70.
    Whalen MJ, Clark RS, Dixon CE, et al. Reduction of cognitive and motor deficits after traumatic brain injury in mice deficient in poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab 1999;19: 835–842.PubMedGoogle Scholar
  71. 71.
    Alano CC, Ying W, Swanson RA. Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem 2004;279: 18895–18902.PubMedGoogle Scholar
  72. 72.
    Ying W, Alano CC, Gamier P, Swanson RA. NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res 2005;79: 216–223.PubMedGoogle Scholar
  73. 73.
    Moubarak RS, Yuste VJ, Artus C, et al. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 2007;27: 4844–4862.PubMedGoogle Scholar
  74. 74.
    Galat A. Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity-targets-functions. Curr Top Med Chem 2003;3: 1315–1347.PubMedGoogle Scholar
  75. 75.
    Candé C, Vahsen N, Kouranti I, et al. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 2004;23: 1514–1521.PubMedGoogle Scholar
  76. 76.
    Zhu C, Wang X, Deinum J, et al. Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med 2007;204: 1741–1748.PubMedGoogle Scholar
  77. 77.
    Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 2003;304: 505–512.PubMedGoogle Scholar
  78. 78.
    Yasuda H, Shichinohe H, Kuroda S, Ishikawa T, Iwasaki Y. Neuroprotective effect of a heat shock protein inducer, gera-nylgeranylacetone in permanent focal cerebral ischemia. Brain Res 2005;1032: 176–182.PubMedGoogle Scholar
  79. 79.
    Lee SH, Kwon HM, Kim YJ, Lee KM, Kim M, Yoon BW. Effects of hsp70.1 gene knockout on the mitochondrial apoptotic pathway after focal cerebral ischemia. Stroke 2004;35: 2195–2199.PubMedGoogle Scholar
  80. 80.
    Beere HM, Wolf BB, Cain K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000;2: 469–475.PubMedGoogle Scholar
  81. 81.
    Gurbuxani S, Schmitt E, Candé C, et al. Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 2003;22: 6669–6678.PubMedGoogle Scholar
  82. 82.
    Matsumori Y, et al. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 2005;25: 899–910.PubMedGoogle Scholar
  83. 83.
    Volbracht C, Leist M, Kolb SA, Nicotera P. Apoptosis in caspase-inhibited neurons. Mol Med 2001;7: 36–48.PubMedGoogle Scholar
  84. 84.
    Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death? Exp Cell Res 2003;283: 1–16.PubMedGoogle Scholar
  85. 85.
    Pohl D, Bittigau P, Ishimaru MJ, et al. N-methyl-d-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proc Natl Acad Sci U S A 1999;96: 2508–2513.PubMedGoogle Scholar
  86. 86.
    Chautan M, Chazal G, Cecconi F, Grass P, Golstein P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 1999;9: 967–970.PubMedGoogle Scholar
  87. 87.
    Oppenheim RW, Flavell RA, Vinsant S, Prevette D, Kuan CY, Rakic P. Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J Neurosci 2001;21: 4752–4760.PubMedGoogle Scholar
  88. 88.
    Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 2004;304: 1500–1502.PubMedGoogle Scholar
  89. 89.
    Culmsee C, Zhu C, Landshamer S, et al. Apoptosis-inducing factor triggered by poly(ADP-Ribose) polymerase and bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci 2005;25: 10262–10272.PubMedGoogle Scholar
  90. 90.
    Zhu C, Wang X, Huang Z, et al. Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ 2007;14: 775–784.PubMedGoogle Scholar
  91. 91.
    Faden AI. Neuroprotection and traumatic brain injury: theoretical option or realistic proposition. Curr Opin Neurol 2002;15: 707–712.PubMedGoogle Scholar
  92. 92.
    Byrnes KR, Loane DJ, Faden AI. Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics 2009;6: 94–107.PubMedGoogle Scholar
  93. 93.
    Faden AI, Stoica B. Neuroprotection: challenges and opportunities. Arch Neurol 2007;64: 794–800.PubMedGoogle Scholar
  94. 94.
    Vink R, Nimmo AJ. Multifunctional drugs for head injury. Neurotherapeutics 2009;6: 28–42.PubMedGoogle Scholar
  95. 95.
    Stoica B, Byrnes K, Faden AI. Multifunctional drug treatment in neurotrauma. Neurotherapeutics 2009;6: 14–27.PubMedGoogle Scholar
  96. 96.
    De Nicola AF, Labombarda F, Deniselle MC, et al. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009;30: 173–187.PubMedGoogle Scholar
  97. 97.
    Faden AI, Knoblach SM, Movsesyan VA, Cernak I. Novel small peptides with neuroprotective and nootropic properties. J Alzheimers Dis 2004;6(6 Suppl): S93-S97.PubMedGoogle Scholar
  98. 98.
    Xiong Y, Mahmood A, Chopp M. Emerging treatments for traumatic brain injury. Expert Opin Emerg Drugs 2009; 14: 67–84.PubMedGoogle Scholar
  99. 99.
    Xiong Y, Chopp M, Lee CP. Erythropoietin improves brain mitochondrial function in rats after traumatic brain injury. Neurol Res 2009;31: 496–502.PubMedGoogle Scholar
  100. 100.
    Li B, Mahmood A, Lu D, et al. Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1β level after traumatic brain injury. Neurosurgery 2009;65: 179–185; discussion 185-176.PubMedGoogle Scholar
  101. 101.
    Wu H, Lu D, Jiang H, et al. Increase in phosphorylation of Akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury. 2008;109: 691–698.Google Scholar
  102. 102.
    LaPlaca MC, Zhang J, Raghupathi R, et al. Pharmacologic inhibition of poly(ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma 2001;18: 369–376.PubMedGoogle Scholar
  103. 103.
    Clark RS, Vagni VA, Nathaniel PD, Jenkins LW, Dixon CE, Szabó C. Local administration of the poly(ADP-ribose) polymerase inhibitor INO-1001 prevents NAD+ depletion and improves water maze performance after traumatic brain injury in mice. J Neurotrauma 2007;24: 1399–1405.PubMedGoogle Scholar
  104. 104.
    Ringger NC, Tolentino PJ, McKinsey DM, Pike BR, Wang KK, Hayes RL. Effects of injury severity on regional and temporal mRNA expression levels of calpains and caspases after traumatic brain injury in rats. J Neurotrauma 2004;21: 829–841.PubMedGoogle Scholar
  105. 105.
    Liu CL, Chen S, Dietrich D, Hu BR. Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab 2008;28: 674–683.PubMedGoogle Scholar
  106. 106.
    Zhang YB, Li SX, Chen XP, et al. Autophagy is activated and might protect neurons from degeneration after traumatic brain injury. Neurosci Bull 2008;24: 143–149.PubMedGoogle Scholar
  107. 107.
    Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 2007;6: 258–268.PubMedGoogle Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  1. 1.Shock, Trauma and Anesthesiology Research (STAR) Center, National Study Center for Trauma and EMSUniversity of Maryland, School of Medicine, Health Sciences Facility I (HSFI)Baltimore

Personalised recommendations