Advertisement

Neurotherapeutics

, Volume 6, Issue 4, pp 755–760 | Cite as

Neuroimaging as a tool for pain diagnosis and analgesic development

  • Karolina Wartolowska
  • Irene Tracey
Translational Approach

Summary

Neuroimaging makes it possible to study pain processing beyond the peripheral nervous system, at the supraspinal level, in a safe, noninvasive way, without interfering with neurophysiological processes. In recent years, studies using brain imaging methods have contributed to our understanding of the mechanisms responsible for the development and maintenance of chronic pain. Moreover, neuroimaging shows promising results for analgesic drug development and in characterizing different types of pain, bringing us closer to development of mechanism-based diagnoses and treatments for the chronic pain patient.

Key Words

Neuroimaging pain analgesia drug development 

References

  1. 1.
    Loeser JD, Treede RD. The Kyoto protocol of IASP Basic Pain Terminology. Pain 2008;137: 473–477.CrossRefPubMedGoogle Scholar
  2. 2.
    Tracey I, Bushneil C. How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J Pain 2009;(in press).Google Scholar
  3. 3.
    Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron 2007;55: 377–391.CrossRefPubMedGoogle Scholar
  4. 4.
    Bingel U, Tracey I. Imaging CNS modulation of pain in humans. Physiology 2008;23: 371–380.CrossRefPubMedGoogle Scholar
  5. 5.
    Wiech K, Ploner M, Tracey I. Neurocognitive aspects of pain perception. Trends Cogn Sci 2008;12: 306–313.CrossRefPubMedGoogle Scholar
  6. 6.
    Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005;9: 463–484.CrossRefPubMedGoogle Scholar
  7. 7.
    Wiech K, Tracey I. The influence of negative emotions on pain: Behavioral effects and neural mechanisms. Neuroimage 2009;47: 987–994.CrossRefPubMedGoogle Scholar
  8. 8.
    Maihofner C, Handwerker HO, Neundorfer B, Birklein F. Cortical reorganization during recovery from complex regional pain syndrome. Neurology 2004;63: 693–701.PubMedGoogle Scholar
  9. 9.
    Wise RG, Tracey I. The role of fMRI in drug discovery. J Magn Reson Imaging 2006;23: 862–876.CrossRefPubMedGoogle Scholar
  10. 10.
    Schweinhardt P, Bountra C, Tracey I. Pharmacological FMRI in the development of new analgesic compounds. NMR Biomed 2006;19: 702–711.CrossRefPubMedGoogle Scholar
  11. 11.
    Borsook D, Bleakman D, Hargreaves R, Upadhyay J, Schmidt KF, Becerra L. A ‘BOLD’ experiment in defining the utility of fMRI in drug development. Neuroimage 2008;42: 461–466.CrossRefPubMedGoogle Scholar
  12. 12.
    Borsook D, Becerra L, Hargreaves R. A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov 2006;5: 411–424.CrossRefPubMedGoogle Scholar
  13. 13.
    Borsook D, Becerra L. Functional imaging of pain and analgesia—a valid diagnostic tool? Pain 2005;117: 247–250.CrossRefPubMedGoogle Scholar
  14. 14.
    Matthews PM, Honey GD, Bullmore ET. Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 2006;7: 732–744.CrossRefPubMedGoogle Scholar
  15. 15.
    Keefe FJ, Rumble ME, Scipio CD, Giordano LA, Perri LM. Psychological aspects of persistent pain: current state of the science. J Pain 2004;5: 195–211.CrossRefPubMedGoogle Scholar
  16. 16.
    Schmidt-Wilcke T, Leinisch E, Ganbauer S, et al. Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 2006;125: 89–97.CrossRefPubMedGoogle Scholar
  17. 17.
    Seminowicz DA, Davis KD. Cortical responses to pain in healthy individuals depends on pain catastrophizing. Pain 2006;120: 297–306.CrossRefPubMedGoogle Scholar
  18. 18.
    Craig A. Pain, inflammation and a nodule after IV medication. Adv Nurse Pract 2005;13: 21–22.PubMedGoogle Scholar
  19. 19.
    Giesecke T, Gracely RH, Grant MA, et al. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 2004;50: 613–623.CrossRefPubMedGoogle Scholar
  20. 20.
    Tracey I, Ploghaus A, Gati JS, et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 2002;22: 2748–2752.PubMedGoogle Scholar
  21. 21.
    Eccleston C, Crombez G. Attention and pain: merging behavioral and neuroscience investigations. Pain 2005;113: 7–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Fairhurst M, Wiech K, Dunckley P, Tracey I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain 2007;128: 101–110.CrossRefPubMedGoogle Scholar
  23. 23.
    Gedney JJ, Logan H. Memory for stress-associated acute pain. J Pain 2004;5: 83–91.CrossRefPubMedGoogle Scholar
  24. 24.
    Bingel U, Schoell E, Buchel C. Imaging pain modulation in health and disease. Curr Opin Neurol 2007;20: 424–431.CrossRefPubMedGoogle Scholar
  25. 25.
    Moisset X, Bouhassira D. Brain imaging of neuropathic pain. Neuroimage 2007;37(suppl 1): S80–88.CrossRefPubMedGoogle Scholar
  26. 26.
    Dolan RJ. Emotion, cognition, and behavior. Science 2002;298: 1191–1194.CrossRefPubMedGoogle Scholar
  27. 27.
    Rushworth MF, Kennerley SW, Walton ME. Cognitive neuroscience: resolving conflict in and over the medial frontal cortex. Curr Biol 2005;15: R54–56.CrossRefPubMedGoogle Scholar
  28. 28.
    Baliki MN, Chialvo DR, Geha PY, et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 2006;26: 12165–12173.CrossRefPubMedGoogle Scholar
  29. 29.
    Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 1995;63: 225–236.CrossRefPubMedGoogle Scholar
  30. 30.
    Pagni CA, Canavero S. Functional thalamic depression in a case of reversible central pain due to a spinal intramedullary cyst. Case report. J Neurosurg 1995;83: 163–165.CrossRefPubMedGoogle Scholar
  31. 31.
    Kupers RC, Gybels JM, Gjedde A. Positron emission tomography study of a chronic pain patient successfully treated with somatosensory thalamic stimulation. Pain 2000;87: 295–302.CrossRefPubMedGoogle Scholar
  32. 32.
    Di Piero V, Jones AK, Iannotti F, et al. Chronic pain: a PET study of the central effects of percutaneous high cervical cordotomy. Pain 1991;46: 9–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science 2000;288: 1769–1772.CrossRefPubMedGoogle Scholar
  34. 34.
    Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 2008;28: 1398–1403.CrossRefPubMedGoogle Scholar
  35. 35.
    Apkarian AV, Sosa Y, Krauss BR, et al. Chronic pain patients are impaired on an emotional decision-making task. Pain 2004;108: 129–136.CrossRefPubMedGoogle Scholar
  36. 36.
    Seifert F, Maihöfner C. Representation of cold allodynia in the human brain—a functional MRI study. Neuroimage 2007;35: 1168–1180.CrossRefPubMedGoogle Scholar
  37. 37.
    Zambreanu L, Wise RG, Brooks JC, Iannetti GD, Tracey I. A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 2005;114: 397–407.CrossRefPubMedGoogle Scholar
  38. 38.
    Iannetti GD, Zambreanu L, Wise RG, et al. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci U S A 2005; 102: 18195–18200.CrossRefPubMedGoogle Scholar
  39. 39.
    Suzuki R, Rygh LJ, Dickenson AH. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends in Pharmacological Sciences 2004;25: 613–617.CrossRefPubMedGoogle Scholar
  40. 40.
    Ren K, Dubner R. Descending modulation in persistent pain: an update. Pain 2002;100: 1–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Gebhart GF. Descending modulation of pain. Neurosci Biobehav Rev 2004;27: 729–737.CrossRefPubMedGoogle Scholar
  42. 42.
    Gwilym SE, Keltner JR, Warnaby CE, et al. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum 2009;(in press).Google Scholar
  43. 43.
    Geha PY, Baliki MN, Wang X, Harden RN, Paice JA, Apkarian AV. Brain dynamics for perception of tactile allodynia (touch-induced pain) in postherpetic neuralgia. Pain 2008;138: 641–656.CrossRefPubMedGoogle Scholar
  44. 44.
    Kulkarni B, Bentley DE, Elliott R, et al. Arthritic pain is processed in brain areas concerned with emotions and fear. Arthritis Rheum 2007;56: 1345–1354.CrossRefPubMedGoogle Scholar
  45. 45.
    Baliki M, Katz J, Chialvo DR, Apkarian AV. Single subject pharmacological-MRI (phMRI) study: modulation of brain activity of psoriatic arthritis pain by cyclooxygenase-2 inhibitor. Mol Pain 2005;1: 32.CrossRefPubMedGoogle Scholar
  46. 46.
    Geha PY, Baliki MN, Chialvo DR, Harden RN, Paice JA, Apkarian AV. Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaiue patch therapy. Pain 2007; 128: 88–100.CrossRefPubMedGoogle Scholar
  47. 47.
    Ducreux D, Attal N, Parker F, Bouhassira D. Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 2006;129: 963–976.CrossRefPubMedGoogle Scholar
  48. 48.
    Seifert F, Maihofner C. Representation of cold allodynia in the human brain—a functional MRI study. Neuroimage 2007;35: 1168–1180.CrossRefPubMedGoogle Scholar
  49. 49.
    Schweinhardt P, Glynn C, Brooks J, et al. Au fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 2006;32: 256–265.CrossRefPubMedGoogle Scholar
  50. 50.
    Lorenz J, Cross D, Minoshima S, Morrow T, Paulson P, Casey K. A unique representation of heat allodynia in the human brain. Neuron 2002;35: 383–393.CrossRefPubMedGoogle Scholar
  51. 51.
    Klein T, Magerl W, Rolke R, Treede RD. Human surrogate models of neuropathic pain. Pain 2005;115: 227–233.CrossRefPubMedGoogle Scholar
  52. 52.
    Cruccu G, Anand P, Attal N, et al. EFNS guidelines on neuropathic pain assessment. Eur J Neurol 2004;11: 153–162.CrossRefPubMedGoogle Scholar
  53. 53.
    Woolf CJ, Bennett GJ, Doherty M, et al. Towards a mechanism-based classification of pain? Pain 1998;77: 227–229.CrossRefPubMedGoogle Scholar
  54. 54.
    Chizh BA, Greenspan JD, Casey KL, Nemenov MI, Treede RD. Identifying biological markers of activity in human nociceptive pathways to facilitate analgesic drug development. Pain 2008; 140: 249–253.CrossRefPubMedGoogle Scholar
  55. 55.
    Coghill RC, McHaffie JG, Yen YF. Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci U S A 2003;100: 8538–8542.CrossRefPubMedGoogle Scholar
  56. 56.
    Jones KL, Finn DP, Governo RJ, et al. Identification of discrete sites of action of chronic treatment with desipramine in a model of neuropathic pain. Neuropharmacology 2009: 56: 405–413.CrossRefPubMedGoogle Scholar
  57. 57.
    Guasti L, Richardson D, Jhaveri M, et al. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain. Mol Pain 2009;5: 35.CrossRefPubMedGoogle Scholar
  58. 58.
    Sindrup SH, Jensen TS. Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain 1999;8: 389–400.CrossRefGoogle Scholar
  59. 59.
    Wagner KJ, Sprenger T, Kochs EF, Tolle TR, Valet M, Willoch F. Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil. Anesthesiology 2007;106: 548–556.CrossRefPubMedGoogle Scholar
  60. 60.
    Wise RG, Rogers R, Painter D, et al. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage 2002;16: 999–1014.CrossRefPubMedGoogle Scholar
  61. 61.
    Tracey I. Prospects for human pharmacological functional magnetic resonance imaging (phMRI). J Clin Pharmacol 2001;(suppl): 21S–28S.Google Scholar
  62. 62.
    Shyu BC, Kiritsy-Roy JA, Morrow TJ, Casey KL. Neurophysiological, pharmacological and behavioral evidence for medial thalamic mediation of cocaine-induced dopaminergic analgesia. Brain Res 1992: 572: 216–223.CrossRefPubMedGoogle Scholar
  63. 63.
    Wise RG, Williams P, Tracey I. Using fMRI to quantify the time dependence of remifentanil analgesia in the human brain. Neuropsychopharmacology 2004;29: 626–635.CrossRefPubMedGoogle Scholar
  64. 64.
    Borsook D, Becerra LR. Breaking down the barriers: fMRI applications in pain, analgesia and analgesics. Mol Pain 2006;2: 30.CrossRefPubMedGoogle Scholar
  65. 65.
    Jones AK, Cunningham V.J, Ha-Kawa S, et al. Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 1994;33: 909–916.CrossRefPubMedGoogle Scholar
  66. 66.
    MacIntosh B.J, Pattinson KT, Gallichan D, et al. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling. J Cereb Blood How Metab 2008;28: 1514–1522.CrossRefGoogle Scholar
  67. 67.
    Owen SL, Green AL, Stein JF, Aziz TZ. Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain 2006; 120: 202–206.CrossRefPubMedGoogle Scholar
  68. 68.
    Dhond RP, Kettner N, Napadow V. Neuroimaging acupuncture effects in the human brain. J Altern Complement Med 2007: 13: 603–616.CrossRefPubMedGoogle Scholar
  69. 69.
    Derbyshire SW, Whalley MG, Stenger VA, Oakley DA. Cerebral activation during hypnotically induced and imagined pain. Neuroimage 2004;23: 392–401.CrossRefPubMedGoogle Scholar
  70. 70.
    Leknes S, Tracey I. A common neurobiology for pain and pleasure. Nat Rev Neurosci 2008;9: 314–320.CrossRefPubMedGoogle Scholar
  71. 71.
    Apkarian AV, Sosa Y, Sonty S, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004;24: 10410–10415.CrossRefPubMedGoogle Scholar
  72. 72.
    Schmidt-Wilcke T, Leinisch E, Straube A, et al. Gray matter decrease in patients with chronic tension type headache. Neurology 2005;65: 1483–1486.CrossRefPubMedGoogle Scholar
  73. 73.
    Grachev ID, Fredrickson BE, Apkarian AV. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 2000;89: 7–18.CrossRefPubMedGoogle Scholar
  74. 74.
    Kuchinad A, Schweinhardt P, Seminowicz DA, Wood PB, Chizh BA, Bushnell MC. Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the, brain? J Neurosci 2007;27: 4004–4007.CrossRefPubMedGoogle Scholar
  75. 75.
    Grachev ID, Fredrickson BE, Apkarian AV. Brain chemistry reflects dual states of pain and anxiety in chronic low back pain. J Neural Transm 2002;109: 1309–1334.CrossRefPubMedGoogle Scholar
  76. 76.
    Buckalew N, Haut MW, Morrow L, Weiner D. Chronic pain is associated with brain volume loss in older adults: Preliminary evidence. Pain Medicine 2008;9: 240–248.CrossRefPubMedGoogle Scholar
  77. 77.
    Schmidt-Wilcke T, Ganssbauer S, Neuner T, Bogdahn U, May A. Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia 2008;28: 1–4.PubMedGoogle Scholar
  78. 78.
    Rocca MA, Ceccarelli A, Falini A, et al. Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 2006;37: 1765–1770.CrossRefPubMedGoogle Scholar
  79. 79.
    Davis KD, Pope G, Chen J, Kwan CL, Crawley AP, Diamant NE. Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology 2008;70: 153–154.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Centre for Functional Magnetic Resonance Imaging of the Brain, Department of Clinical Neurology, and Nuffield Department of AnaestheticsUniversity of OxfordOxfordEngland, OX3 9DU, UK

Personalised recommendations