, Volume 6, Issue 4, pp 713–737 | Cite as

Cannabinoids as pharmacotherapies for neuropathic pain: From the bench to the bedside

  • Elizabeth J. Rahn
  • Andrea G. HohmannEmail author
Transmitter and Receptor Manipulation


Neuropathic pain is a debilitating form of chronic pain resulting from nerve injury, disease states, or toxic insults. Neuropathic pain is often refractory to conventional pharmacotherapies, necessitating validation of novel analgesics. Cannabinoids, drugs that share the same target as Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive ingredient in cannabis, have the potential to address this unmet need. Here, we review studies evaluating cannabinoids for neuropathic pain management in the clinical and preclinical literature. Neuropathic pain associated with nerve injury, diabetes, chemotherapeutic treatment, human immunodeficiency virus, multiple sclerosis, and herpes zoster infection is considered. In animals, cannabinoids attenuate neuropathic nociception produced by traumatic nerve injury, disease, and toxic insults. Effects of mixed cannabinoid CB1/CB2 agonists, CB2 selective agonists, and modulators of the endocannabinoid system (i.e., inhibitors of transport or degradation) are compared. Effects of genetic disruption of cannabinoid receptors or enzymes controlling endocannabinoid degradation on neuropathic nociception are described. Specific forms of allodynia and hyperalgesia modulated by cannabinoids are also considered. In humans, effects of smoked marijuana, synthetic Δ9-THC analogs (e.g., Marinol, Cesamet) and medicinal cannabis preparations containing both Δ9-THC and cannabidiol (e.g., Sativex, Cannador) in neuropathic pain states are reviewed. Clinical studies largely affirm that neuropathic pain patients derive benefits from cannabinoid treatment. Subjective (i.e., rating scales) and objective (i.e., stimulus-evoked) measures of pain and quality of life are considered. Finally, limitations of cannabinoid pharmacotherapies are discussed together with directions for future research.

Key Words

Endocannabinoid marijuana neuropathy multiple sclerosis chemotherapy diabetes 


  1. 1.
    Gaoni Y, Mechoulam R. Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964: 86: 1946–1947.Google Scholar
  2. 2.
    Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346: 561–564.PubMedCrossRefGoogle Scholar
  3. 3.
    Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365: 61–65.PubMedCrossRefGoogle Scholar
  4. 4.
    Guindon J, Hohmann AG. Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 2008; 153: 319–334.PubMedCrossRefGoogle Scholar
  5. 5.
    Ledent C, Valverde O, Cossu G, et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 1999;283: 401–404.PubMedCrossRefGoogle Scholar
  6. 6.
    Buckley NE, McCoy KL, Mezey E, et al. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur J Pharmacol 2000;396: 141–149.PubMedCrossRefGoogle Scholar
  7. 7.
    Agarwal N, Pacher P, Tegeder I, et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 2007;10: 870–879.PubMedCrossRefGoogle Scholar
  8. 8.
    Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 1991;11: 563–583.PubMedGoogle Scholar
  9. 9.
    Matsuda LA, Bonner TI, Lolait SJ. Localization of cannabinoid receptor mRNA in rat brain. J Comp Neurol 1993;327: 535–550.PubMedCrossRefGoogle Scholar
  10. 10.
    Hohmann AG, Herkenham M. Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience 1999;90: 923–931.PubMedCrossRefGoogle Scholar
  11. 11.
    Malan TP Jr., Ibrahim MM, Deng H, et al. CB2 caunabinoid receptor-mediated peripheral antinociceptiou. Pain 2001;93: 239–245.PubMedCrossRefGoogle Scholar
  12. 12.
    Facci L, Dal Toso R, Romanello S, Buriani A, Skaper SD, Leon A. Mast cells express a peripheral cannabinoid receptor with differentia] sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci U S A 1995;92: 3376–3380.PubMedCrossRefGoogle Scholar
  13. 13.
    Ross RA, Coutts AA, McFarlane SM, et al. Actions of cannabinoid receptor ligands ou rat cultured sensory neurones: implications for antinociception. Neuropharmacology 2001;40: 221–232.PubMedCrossRefGoogle Scholar
  14. 14.
    Van Sickle MD, Duncan M, Kingsley PJ, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005;310: 329–332.PubMedCrossRefGoogle Scholar
  15. 15.
    Gong JP, Onaivi ES, Ishiguro H, et al. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 2006;1071: 10–23.PubMedCrossRefGoogle Scholar
  16. 16.
    Ashton JC, Friberg D, Darlington CL, Smith PF. Expression of the, cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci Lett 2006;396: 113–116.PubMedCrossRefGoogle Scholar
  17. 17.
    Beltramo M, Bernardini N, Bertorelli R, et al. CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms. Eur J Neurosci 2006;23: 1530–1538.PubMedCrossRefGoogle Scholar
  18. 18.
    Wotherspoon G, Fox A, McIntyre P, Colley S, Bevan S, Winter J. Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience 2005;135: 235–245.PubMedCrossRefGoogle Scholar
  19. 19.
    Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the caunabiuoid receptor. Science 1992;258: 1946–1949.PubMedCrossRefGoogle Scholar
  20. 20.
    Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995;50: 83–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995;215: 89–97.PubMedCrossRefGoogle Scholar
  22. 22.
    Hanus L, Abu-Lafi S, Fride E, et al. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sa U S A 2001;98: 3662–3665.CrossRefGoogle Scholar
  23. 23.
    Porter AC, Sauer JM, Knierman MD, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 2002;301: 1020–1024.PubMedCrossRefGoogle Scholar
  24. 24.
    Huang SM, Bisogno T, Trevisani M, et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A 2002: 99: 8400–8405.PubMedCrossRefGoogle Scholar
  25. 25.
    Fezza F, De Simone C, Amadio D, Maccarrone M. Fatty acid amide hydrolase: a gate-keeper of the endocannabinoid system. Subcell Biochem 2008;49: 101–132.PubMedCrossRefGoogle Scholar
  26. 26.
    Lo Verme J, Fu J, Astarita G, et al. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol 2005;67: 15–19.PubMedCrossRefGoogle Scholar
  27. 27.
    Re G, Barbero R, Miolo A, Di Marzo V. Palmitoylethanolamide, endocannabinoids and related cannabimimetic compounds in protection against tissue inflammation and pain: potential use in companion animals. Vet J 2007;173: 21–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Bisogno T, De Petrocellis L, Di Marzo V. Fatty acid amide hydrolase, an enzyme with many bioactive substrates. Possible therapeutic implications. Curr Pharm Des 2002;8: 533–547.PubMedCrossRefGoogle Scholar
  29. 29.
    Cravatt BF, Demarest K, Patricelli MP, et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 2001;98: 9371–9376.PubMedCrossRefGoogle Scholar
  30. 30.
    Lichtman AH, Shelton CC, Advani T, Cravatt BF. Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia. Pain 2004;109: 319–327.PubMedCrossRefGoogle Scholar
  31. 31.
    Ross RA, Gibson TM, Brockie HC, et al. Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. Br J Pharmacol 2001;132: 631–640.PubMedCrossRefGoogle Scholar
  32. 32.
    Bouaboula M, Hilairet S, Marchand J, Fajas L, Le Fur G, Casellas P. Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur J Pharmacol 2005; 517: 174–181.PubMedCrossRefGoogle Scholar
  33. 33.
    Hohmann AG, Suplita RL, Bolton NM, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature 2005;435: 1108–1112.PubMedCrossRefGoogle Scholar
  34. 34.
    Dinh TP, Carpenter D, Leslie FM, et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A 2002;99: 10819–10824.PubMedCrossRefGoogle Scholar
  35. 35.
    Dixon WE. The pharmacology of Cannabis indica. BMJ 1899;2: 1354–1357.CrossRefGoogle Scholar
  36. 36.
    Walker JM, Hohmann AG. Cannabinoid mechanisms of pain suppression. Handb Exp Pharmacol 2005:509–554.Google Scholar
  37. 37.
    Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988;33: 87–107.PubMedCrossRefGoogle Scholar
  38. 38.
    Lim G, Sung B, Ji RR, Mao J. Upregulation of spinal cannabinoid-1-receptors following nerve injury enhances the effects of Win 55.212-2 on neuropathic pain behaviors in rats. Pain 2003; 105: 275–283.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang S, Lim G, Mao J, Sung B, Yang L, Mao J. Central glucocorticoid receptors regulate the upregulation of spinal cannabinoid-1 receptors after peripheral nerve injury in rats. Pain 2007; 131: 96–105.PubMedCrossRefGoogle Scholar
  40. 40.
    Costa B, Trovato AE, Comelli F, Giagnoni G, Colleoni M. The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain. Eur J Pharmacol 2007;556: 75–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Comelli F, Giagnoni G, Bettoni I, Colleoni M, Costa B. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved. Phytother Res 2008;22: 1017–1024.PubMedCrossRefGoogle Scholar
  42. 42.
    Herzberg U, Eliav E, Bennett GJ, Kopin IJ. The analgesic effects of R(+)-WIN 55,212-2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. Neurosci Lett 1997; 221: 157–160.PubMedCrossRefGoogle Scholar
  43. 43.
    Costa B, Trovato AE, Colleoni M, Giagnoni G, Zarini E, Croci T. Effect of the cannabinoid CB1 receptor antagonist, SR141716, on nociceptive response and nerve demyelination in rodents with chronic constriction injury of the sciatic nerve. Pain 2005;116: 52–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Ibrahim MM, Deng H, Zvonok A, et al. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci U S A 2003;100: 10529–10533.PubMedCrossRefGoogle Scholar
  45. 45.
    Sain NM, Liang A, Kane SA, Urban MO. Antinociceptive effects of the non-selective cannabinoid receptor agonist CP 55,940 are absent in CB1(−/−) and not CB2(−/−) mice in models of acute and persistent pain. Neuropharmacology 2009;57: 235–241.PubMedCrossRefGoogle Scholar
  46. 46.
    Strangman NM, Walker JM. Cannabinoid WIN 55,212-2 inhibits the activity-dependent facilitation of spinal nociceptive responses. J Neurophysiol 1999;82: 472–477.PubMedGoogle Scholar
  47. 47.
    Liu C, Walker JM. Effects of a cannabinoid agonist on spinal nociceptive neurons in a rodent model of neuropathic pain. J Neurophysiol 2006;96: 2984–2994.PubMedCrossRefGoogle Scholar
  48. 48.
    Costa B, Colleoni M, Conti S, et al. Repeated treatment with the synthetic cannabinoid WIN 55,212-2 reduces both hyperalgesia and production of pronociceptive mediators in a rat model of neuropathic pain. Br J Pharmacol 2004;141: 4–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O’Donnell D. Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci 2003;17: 2750–2754.PubMedCrossRefGoogle Scholar
  50. 50.
    Hu B, Doods H, Treede RD, Ceci A. Depression-like behaviour in rats with mononeuropathy is reduced by the CB2-selective agonist GW405833. Pain 2009.Google Scholar
  51. 51.
    Yao BB, Hsieh G, Daza AV, et al. Characterization of a cannabinoid CB2 receptor-selective agonist, A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], using in vitro pharmacological assays, in vivo pain models, and pharmacological magnetic resonance imaging. J Pharmacol Exp Ther 2009;328: 141–151.PubMedCrossRefGoogle Scholar
  52. 52.
    Costa B, Siniscalco D, Trovato AE, et al. AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain. Br J Pharmacol 2006;148: 1022–1032.PubMedCrossRefGoogle Scholar
  53. 53.
    La Rana G, Russo R, Campolongo P, et al. Modulation of neuropathic and inflammatory pain by the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide]. J Pharmacol Exp Ther 2006;317: 1365–1371.PubMedCrossRefGoogle Scholar
  54. 54.
    La Rana G, Russo R, D’Agostino G, et al. AM404, an anandamide transport inhibitor, reduces plasma extravasation in a model of neuropathic pain in rat: role for cannabinoid receptors. Neuropharmacology 2008;54: 521–529.PubMedCrossRefGoogle Scholar
  55. 55.
    Russo R, Loverme J, La Rana G, et al. The fatty acid amide hydrolase inhibitor URB597 (cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. J Pharmacol Exp Ther 2007;322: 236–242.PubMedCrossRefGoogle Scholar
  56. 56.
    Petrosino S, Palazzo E, de Novellis V, et al. Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats. Neuropharmacology 2007;52: 415–422.PubMedCrossRefGoogle Scholar
  57. 57.
    Palazzo E, de Novellis V, Petrosino S, et al. Neuropathic pain and the endocannabinoid system in the dorsal raphe: pharmacological treatment and interactions with the serotonergic system. Eur J Neurosci 2006;24: 2011–2020.PubMedCrossRefGoogle Scholar
  58. 58.
    Rodella LE, Borsani E, Rezzani R, Ricci F, Buffoli B, Bianchi R. AM404, an inhibitor of anandamide reuptake decreases Fos-immunoreactivity in the spinal cord of neuropathic rats after nonnoxious stimulation. Eur J Pharmacol 2005;508: 139–146.PubMedCrossRefGoogle Scholar
  59. 59.
    Kinsey SG, Long JZ, O’Neal ST, et al. Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain. J Pharmacol Exp Ther 2009.Google Scholar
  60. 60.
    Costa B, Comelli F, Bettoni I, Colleoni M, Giagnoni G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPAR-gamma receptors and neurotrophic factors. Pain 2008.Google Scholar
  61. 61.
    Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990;43: 205–218.PubMedCrossRefGoogle Scholar
  62. 62.
    Jayamanne A, Greenwood R, Mitchell VA, Asian S, Piomelli D, Vaughan CW. Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models. Br J Pharmacol 2006;147: 281–288.PubMedCrossRefGoogle Scholar
  63. 63.
    Racz I, Nadal X, Alferink J, et al. Crucial role of CB(2) cannabinoid receptor in the regulation of central immune responses during neuropathic pain. J Neurosci 2008;28: 12125–12135.PubMedCrossRefGoogle Scholar
  64. 64.
    Wallace VC, Segerdahl AR, Lambert DM, et al. The effect of the palmitoylethanolamide analogue, palmitoylallylamide (L-29) on pain behaviour in rodent models of neuropathy. Br J Pharmacol 2007: 151: 1117–1128.PubMedCrossRefGoogle Scholar
  65. 65.
    Helyes Z, Nemeth J, Than M, Bolcskei K, Pinter E, Szolcsanyi J. Inhibitory effect of anandamide on resiniferatoxin-induced sensory neuropeptide release in vivo and neuropathic hyperalgesia in the rat. Life Sci 2003;73: 2345–2353.PubMedCrossRefGoogle Scholar
  66. 66.
    Guindon J, Beaulieu P. Antihyperalgesic effects of local injections of anandamide, ibuprofen, rofecoxib and their combinations in a model of neuropathic pain. Neuropharmacology 2006;50: 814–823.PubMedCrossRefGoogle Scholar
  67. 67.
    Desroches J, Guindon J, Lambert C, Beaulieu P. Modulation of the anti-nociceptive effects of 2-arachidonoyl glycerol by peripherally administered FAAH and MGL inhibitors in a neuropathic pain model. Br J Pharmacol 2008;155: 913–924.PubMedCrossRefGoogle Scholar
  68. 68.
    Fox A, Kesingland A, Gentry C, et al. The role of central and peripheral Cannabinoid1 receptors in the antihyperalgesic activity of cannabinoids in a model of neuropathic pain. Pain 2001;92: 91–100.PubMedCrossRefGoogle Scholar
  69. 69.
    Dyson A, Peacock M, Chen A, et al. Antihyperalgesic properties of the cannabinoid CT-3 in chronic neuropathic and inflammatory pain states in the rat. Pain 2005;116: 129–137.PubMedCrossRefGoogle Scholar
  70. 70.
    Yamamoto W, Mikami T, Iwamura H. Involvement of central cannabinoid CB2 receptor in reducing mechanical allodynia in a mouse model of neuropathic pain. Eur J Pharmacol 2008;583: 56–61.PubMedCrossRefGoogle Scholar
  71. 71.
    Racz I, Nadal X, Alferink J, et al. Interferon-gamma is a critical modulator of CB(2) cannabinoid receptor signaling during neuropathic pain. J Neurosci 2008;28: 12136–12145.PubMedCrossRefGoogle Scholar
  72. 72.
    Staton PC, Hatcher JP, Walker DJ, et al. The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 2008;139: 225–236.PubMedCrossRefGoogle Scholar
  73. 73.
    Mitchell VA, Greenwood R, Jayamanne A, Vaughan CW. Actions of the endocannabinoid transport inhibitor AM404 in neuropathic and inflammatory pain models. Clin Exp Pharmacol Physiol 2007;34: 1186–1190.PubMedGoogle Scholar
  74. 74.
    Lambert DM, Di Marzo V. The palmitoylethanolamide and oleamide enigmas: are these two fatty acid amides cannabimimetic? Curr Med Chem 1999;6: 757–773.PubMedGoogle Scholar
  75. 75.
    Vuong LA, Mitchell VA, Vaughan CW. Actions of N-arachidonyl-glycine in a rat neuropathic pain model. Neuropharmacology 2008;54: 189–193.PubMedCrossRefGoogle Scholar
  76. 76.
    Dani M, Guindon J, Lambert C, Beaulieu P. The local antinociceptive effects of paracetamol in neuropathic pain are mediated by cannabinoid receptors. Eur J Pharmacol 2007;573: 214–215.PubMedCrossRefGoogle Scholar
  77. 77.
    Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992;50: 355–363.PubMedCrossRefGoogle Scholar
  78. 78.
    De Vry J, Denzer D, Reissmueller E, et al. 3-[2-cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfo nate (BAY 59-3074): a novel cannabinoid Cb1/Cb2 receptor partial agonist with antihyperalgesic and antiallodynic effects. J Pharmacol Exp Ther 2004;310: 620–632.PubMedCrossRefGoogle Scholar
  79. 79.
    Bridges D, Ahmad K, Rice AS. The synthetic cannabinoid WIN55,212-2 attenuates hyperalgesia and allodynia in a rat model of neuropathic pain. Br J Pharmacol 2001;133: 586–594.PubMedCrossRefGoogle Scholar
  80. 80.
    LaBuda CJ, Little PJ. Pharmacological evaluation of the, selective spinal nerve ligation model of neuropathic pain in the rat. J Neurosci Methods 2005;144:175–181.Google Scholar
  81. 81.
    Leichsenring A, Andriske M, Backer I, Stichel CC, Lubbert H. Analgesic and autiinflammatory effects of cannabinoid receptor agonists in a rat model of neuropathic pain. Naunyu Schmiedebergs Arch Pharmacol 2009;379: 627–636.CrossRefGoogle Scholar
  82. 82.
    Chapman V. Functional changes in the inhibitory effect of spinal cannabinoid (CB) receptor activation in nerve injured rats. Neuropharmacology 2001;41: 870–877.PubMedCrossRefGoogle Scholar
  83. 83.
    Mitrirattanakul S, Ramakul N, Guerrero AV, et al. Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. Pain 2006;126: 102–114.PubMedCrossRefGoogle Scholar
  84. 84.
    Kawasaki Y, Kohno T, Ji RR. Different effects of opioid and cannabinoid receptor agonists on C-fiber-induced extracellular signal-regulated kinase activation in dorsal horn neurons in normal and spinal nerve-ligated rats. J Pharmacol Exp Ther 2006; 316: 601–607.PubMedCrossRefGoogle Scholar
  85. 85.
    Naguib M, Diaz P, Xu JJ, et al. MDA7: a novel selective agonist for CB2 receptors that prevents allodynia in rat neuropathic pain models. Br J Pharmacol 2008;155: 1104–1116.PubMedCrossRefGoogle Scholar
  86. 86.
    Elmes SJ, Jhaveri MD, Smart D, Kendall DA, Chapman V. Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naive rats and in rat models of inflammatory and neuropathic pain. Eur J Neurosci 2004;20: 2311–2320.PubMedCrossRefGoogle Scholar
  87. 87.
    Jhaveri MD, Elmes SJ, Richardson D, et al. Evidence for a novel functional role of cannabinoid CB(2) receptors in the thalamus of neuropathic rats. Eur J Neurosci 2008;27: 1722–1730.PubMedCrossRefGoogle Scholar
  88. 88.
    McGaraughty S, Chu KL, Dart MJ, Yao BB, Meyer MD. A CB(2) receptor agonist, A-836339, modulates wide dynamic range neuronal activity in neuropathic rats: contributions of spinal and peripheral CB(2) receptors. Neuroscience 2009;158: 1652–1661.PubMedCrossRefGoogle Scholar
  89. 89.
    Rahn EJ, Zvonok AM, Thakur GA, Khanolkar AD, Makriyannis A, Hohmann AG. Selective activation of cannabinoid CB2 receptors suppresses neuropathic nociception induced by treatment with the chemotherapeutic agent paclitaxel in rats. J Pharmacol Exp Ther 2008;327: 584–591.PubMedCrossRefGoogle Scholar
  90. 90.
    Sit SY, Conway C, Bertekap R, et al. Novel inhibitors of fatty acid amide hydrolase. Bioorg Med Chem Lett 2007;17: 3287–3291.PubMedCrossRefGoogle Scholar
  91. 91.
    Chang L, Luo L, Palmer JA, et al. Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms. Br J Pharmacol 2006;148: 102–113.PubMedCrossRefGoogle Scholar
  92. 92.
    Jhaveri MD, Richardson D, Kendall DA, Barrett DA, Chapman V. Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain. J Neurosci 2006;26: 13318–13327.PubMedCrossRefGoogle Scholar
  93. 93.
    Vos BP, Maciewicz R. Behavioral changes following ligation of the infraorbital nerve in rats: an animal model of trigeminal neuropathic pain. In: Besson JM, Guilbaud G, eds. Lesions of primary afferent fibers as a tool for the study of clinical pain. Amsterdam: Elsevier, 1991: 147–158.Google Scholar
  94. 94.
    Liang YC, Huang CC, Hsu KS. The synthetic cannabinoids attenuate allodynia and hyperalgesia in a rat model of trigeminal neuropathic pain. Neuropharmacology 2007: 53: 169–177.PubMedCrossRefGoogle Scholar
  95. 95.
    Liang YC, Huang CC, Hsu KS, Takahashi T. Cannabinoid-induced presynaptic inhibition at the primary afferent trigeminal synapse of juvenile rat brainstem slices. J Physiol 2004;555: 85–96.PubMedCrossRefGoogle Scholar
  96. 96.
    Romero-Sandoval A, Nutile-McMenemy N, DeLeo JA. Spinal microglial and perivascular cell cannabinoid receptor type 2 activation reduces behavioral hypersensitivity without tolerance after peripheral nerve injury. Anesthesiology 2008;108: 722–734.PubMedCrossRefGoogle Scholar
  97. 97.
    Tanga FY, Nutile-McMenemy N, DeLeo JA. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 2005;102: 5856–5861.PubMedCrossRefGoogle Scholar
  98. 98.
    Walczak JS, Pichette V, Leblond F, Desbiens K, Beaulieu P. Behavioral, pharmacological and molecular characterization of the saphenous nerve partial ligation: a new model of neuropathic pain. Neuroscience 2005;132: 1093–1102.PubMedCrossRefGoogle Scholar
  99. 99.
    Walczak JS, Pichette V, Leblond F, Desbiens K, Beaulieu P. Characterization of chronic constriction of the saphenous nerve, a model of neuropathic pain in mice showing rapid molecular and electrophysiological changes. J Neurosci Res 2006;83: 1310–1322.PubMedCrossRefGoogle Scholar
  100. 100.
    Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000: 87: 149–158.PubMedCrossRefGoogle Scholar
  101. 101.
    Decosterd I, Allchorne A, Woolf CJ. Differential analgesic sensitivity of two distinct neuropathic pain models. Anesth Analg 2004;99: 457–463.PubMedCrossRefGoogle Scholar
  102. 102.
    Bruce JC, Oatway MA, Weaver LC. Chronic pain after clip-compression injury of the rat spinal cord. Exp Neurol 2002;178: 33–48.PubMedCrossRefGoogle Scholar
  103. 103.
    Hama A, Sagen J. Antinociceptive effect of cannabinoid agonist WIN 55,212-2 in rats with a spinal cord injury. Exp Neurol 2007: 204: 454–457.PubMedCrossRefGoogle Scholar
  104. 104.
    Hama A, Sagen J. Sustained antinociceptive effect of cannabinoid receptor agonist WIN 55,212-2 over time in rat model of neuropathic spinal cord injury pain. J Rehabil Res Dev 2009;46: 135–143.PubMedCrossRefGoogle Scholar
  105. 105.
    Hofmann HA, De Vry J, Siegling A, Spreyer P, Denzer D. Pharmacological sensitivity and gene expression analysis of the tibial nerve injury model of neuropathic pain. Eur J Pharmacol 2003; 470: 17–25.PubMedCrossRefGoogle Scholar
  106. 106.
    Siegling A, Hofmann HA, Denzer D, Mauler F, De Vry J. Cannabinoid CB(1) receptor upregulation in a rat model of chronic neuropathic pain. Eur J Pharmacol 2001;415: R5–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Bujalska M. Effect of cannabinoid receptor agonists on streptozotocin-induced hyperalgesia in diabetic neuropathy. Pharmacology 2008;82: 193–200.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang F, Hong S, Stone V, Smith PJ. Expression of cannabinoid CB1 receptors in models of diabetic neuropathy. J Pharmacol Exp Ther 2007;323: 508–515.PubMedCrossRefGoogle Scholar
  109. 109.
    Matias I, Wang JW, Moriello AS, Nieves A, Woodward DF, Di Marzo V. Changes in endocannabinoid and palmitoylethanolamide levels in eye tissues of patients with diabetic retinopathy and age-related macular degeneration. Prostaglandins Leukot Essent Fatty Acids 2006;75: 413–418.PubMedCrossRefGoogle Scholar
  110. 110.
    Engeli S, Bohnke J, Feldpausch M, et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 2005;54: 2838–2843.PubMedCrossRefGoogle Scholar
  111. 111.
    Murdolo G, Kempf K, Hammarstedt A, Herder C, Smith U, Jansson PA. Insulin differentially modulates the peripheral endocannabinoid system in human subcutaneous abdominal adipose tissue from lean and obese individuals. J Endocrinol Invest 2007: 30: RC17–21.PubMedGoogle Scholar
  112. 112.
    Scheen AJ. The endocannabinoid system: a promising target for the management of type 2 diabetes. Curr Protein Pept Sci 2009; 10: 56–74.PubMedCrossRefGoogle Scholar
  113. 113.
    Watanabe T, Kubota N, Ohsugi M, et al. Rimonabant ameliorates insulin resistance via both adiponectin-dependent and adiponectin-independent pathways. J Biol Chem 2009;284: 1803–1812.PubMedCrossRefGoogle Scholar
  114. 114.
    Dagon Y, Avraham Y, Link G, Zolotarev O, Mechoulam R, Berry EM. The synthetic cannabinoid HU-210 attenuates neural damage in diabetic mice and hyperglycemic pheochromocytoma PC12 cells. Neurobiol Dis 2007;27: 174–181.PubMedCrossRefGoogle Scholar
  115. 115.
    Williams J, Haller VL, Stevens DL, Welch SP. Decreased basal endogenous opioid levels in diabetic rodents: effects on morphine and delta-9-tetrahydrocannabinoid-induced antinociception. Eur J Pharmacol 2008;584: 78–86.PubMedCrossRefGoogle Scholar
  116. 116.
    Vera G, Chiarlone A, Cabezos PA, Pascual D, Martin MI, Abalo R. WIN 55,212-2 prevents mechanical allodynia but not alterations in feeding behaviour induced by chronic cisplatin in the rat. Life Sci 2007;81: 468–479.PubMedCrossRefGoogle Scholar
  117. 117.
    Ray AP, Griggs L, Darmani NA. Delta 9-tetrahydrocannabinol suppresses vomiting behavior and Fos expression in both acute and delayed phases of cisplatin-induced emesis in the least shrew. Behav Brain Res 2009;196: 30–36.PubMedCrossRefGoogle Scholar
  118. 118.
    Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 2001;94: 293–304.PubMedCrossRefGoogle Scholar
  119. 119.
    Pascual D, Goicoechea C, Suardiaz M, Martin MI. A cannabinoid agonist, WIN 55,212-2, reduces neuropathic nociception induced by paclitaxel in rats. Pain 2005;118: 23–34.PubMedCrossRefGoogle Scholar
  120. 120.
    Flatters SJ, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 2004; 109: 150–161.PubMedCrossRefGoogle Scholar
  121. 121.
    Weng HR, Cordella JV, Dougherty PM. Changes in sensory processing in the spinal dorsal horn accompany vincristine-induced hyperalgesia and allodynia. Pain 2003;103: 131–138.PubMedCrossRefGoogle Scholar
  122. 122.
    Rahn EJ, Makriyannis A, Hohmann AG. Activation of cannabinoid CB1 and CB2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats. Br J Pharmacol 2007;152: 765–777.PubMedCrossRefGoogle Scholar
  123. 123.
    Wallace VC, Blackbeard J, Segerdahl AR, et al. Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain 2007;130: 2688–2702.PubMedCrossRefGoogle Scholar
  124. 124.
    Wallace VC, Blackbeard J, Pheby T, et al. Pharmacological, behavioural and mechanistic analysis of HIV-1 gp120 induced painful neuropathy. Pain 2007;133: 47–63.PubMedCrossRefGoogle Scholar
  125. 125.
    Wallace VC, Cottrell DF, Brophy PJ, Fleetwood-Walker SM. Focal lysolecithin-induced demyelination of peripheral afferents results in neuropathic pain behavior that is attenuated by cannabinoids. J Neurosci 2003;23: 3221–3233.PubMedGoogle Scholar
  126. 126.
    Lynch JL, Gallus NJ, Ericson ME, Beitz AJ. Analysis of nociception, sex and peripheral nerve innervation in the TMEV animal model of multiple sclerosis. Pain 2008;136: 293–304.PubMedCrossRefGoogle Scholar
  127. 127.
    Buchanan RJ, Wang S, Ju H. Gender analyses of nursing home residents with multiple sclerosis. J Gend Specif Med 2003;6: 35–46.PubMedGoogle Scholar
  128. 128.
    Olechowski CJ, Truong JJ, Kerr BJ. Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain 2009;141: 156–164.PubMedCrossRefGoogle Scholar
  129. 129.
    Loria F, Petrosino S, Mestre L, et al. Study of the regulation of the endocannabinoid system in a virus model of multiple sclerosis reveals a therapeutic effect of palmitoylethauolamide. Eur J Neurosci 2008;28: 633–641.PubMedCrossRefGoogle Scholar
  130. 130.
    LoVerme J, Russo R, La Rana G, et al. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha. J Pharmacol Exp Ther 2006;319: 1051–1061.PubMedCrossRefGoogle Scholar
  131. 131.
    Hasnie FS, Breuer J, Parker S, et al. Further characterization of a rat model of varicella zoster virus-associated pain: Relationship between mechanical hypersensitivity and anxiety-related behavior, and the influence of analgesic drugs. Neuroscience 2007;144: 1495–1508.PubMedCrossRefGoogle Scholar
  132. 132.
    Beaulieu P, Ware M. Reassessment of the role of cannabinoids in the management of pain. Curr Opin Anaesthesiol 2007;20: 473–477.PubMedCrossRefGoogle Scholar
  133. 133.
    Nurmikko TJ, Serpell MG, Hoggart B, Toomey PJ, Morlion BJ, Haines D. Sativex successfully treats neuropathic pain characterised by allodyma: a randomised, double-blind, placebo-controlled clinical trial. Pain 2007;133: 210–220.PubMedCrossRefGoogle Scholar
  134. 134.
    Svendsen KB, Jensen TS, Bach FW. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial. BMJ 2004;329: 253.PubMedCrossRefGoogle Scholar
  135. 135.
    Abrarns DI, Jay CA, Shade SB, et al. Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology 2007;68: 515–521.CrossRefGoogle Scholar
  136. 136.
    Abrams DI, Hilton JF, Leiser RJ, et al. Short-term effects of cannabinoids in patients with HIV-1 infection: a randomized, placebo-controlled clinical trial. Ann Intern Med 2003;139: 258–266.PubMedGoogle Scholar
  137. 137.
    Ellis RJ, Toperoff W, Vaida F, et al. Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychophannacology 2009;34: 672–680.CrossRefGoogle Scholar
  138. 138.
    Woolridge E, Barton S, Samuel J, Osorio J, Dougherty A, Holdcroft A. Cannabis use in HIV for pain and other medical symptoms. J Pain Symptom Manage 2005;29: 358–367.PubMedCrossRefGoogle Scholar
  139. 139.
    Beal JE, Olson R, Laubenstein L, et al. Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. J Pain Symptom Manage 1995;10: 89–97.PubMedCrossRefGoogle Scholar
  140. 140.
    Vincent BJ, McQuiston DJ, Einhorn LH, Nagy CM, Brames MJ. Review of cannabinoids and their antiemetic effectiveness. Drugs 1983;25(suppl 1): 52–62.PubMedCrossRefGoogle Scholar
  141. 141.
    Tramer MR, Carroll D, Campbell FA, Reynolds DJ, Moore RA, McQuay HJ. Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. BMJ 2001;323: 16–21.PubMedCrossRefGoogle Scholar
  142. 142.
    Malfitano AM, Proto MC, Bifulco M. Cannabinoids in the management of spasticity associated with multiple sclerosis. Neuropsychiatr Dis Treat 2008;4: 847–853.PubMedGoogle Scholar
  143. 143.
    Zajicek J, Fox P, Sanders H, et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet 2003;362: 1517–1526.PubMedCrossRefGoogle Scholar
  144. 144.
    Mechoulam R, Peters M, Murillo-Rodriguez E, Hanus LO. Cannabidiol—recent advances. Chem Biodivers 2007;4: 1678–1692.PubMedCrossRefGoogle Scholar
  145. 145.
    Zajicek JP, Sanders HP, Wright DE, et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. J Neurol Neurosurg Psychiatry 2005: 76: 1664–1669.PubMedCrossRefGoogle Scholar
  146. 146.
    Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in centra] pain in multiple sclerosis. Neurology 2005;65: 812–819.PubMedCrossRefGoogle Scholar
  147. 147.
    Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther 2007;29: 2068–2079.PubMedCrossRefGoogle Scholar
  148. 148.
    Iskedjian M, Bereza B, Gordon A, Piwko C, Einarson TR. Meta-analysis of cannabis based treatments for neuropathic and multiple sclerosis-related pain. Cure Med Res Opin 2007;23: 17–24.CrossRefGoogle Scholar
  149. 149.
    Yiangou Y, Facer P, Durrenberger P, et al. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 2006;6: 12.PubMedCrossRefGoogle Scholar
  150. 150.
    Berman JS, Symonds C, Birch R. Efficacy of two cannabis based medicinal extracts for relief of central neuropathic pain from brachial plexus avulsion: results of a randomised controlled trial. Pain 2004;112: 299–306.PubMedCrossRefGoogle Scholar
  151. 151.
    Anand U, Otto WR, Sanchez-Herrera D, et al. Cannabinoid receptor CB2 localisation and agonist-mediated inhibition of capsaicin responses in human sensory neurons. Pain 2008;138: 667–680.PubMedCrossRefGoogle Scholar
  152. 152.
    Karst M, Salim K, Burstein S, Conrad I, Hoy L, Schneider U. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA 2003: 290: 1757–1762.PubMedCrossRefGoogle Scholar
  153. 153.
    Salim K, Schneider U, Burstein S, Hoy L, Karst M. Pain measurements and side effect profile of the novel cannabinoid ajulemic acid. Neuropharmacology 2005;48: 1164–1171.PubMedCrossRefGoogle Scholar
  154. 154.
    Liu J, Li H, Burstein SH, Zurier RB, Chen JD. Activation and binding of peroxisome proliferator-activated receptor gamma by synthetic cannabinoid ajulemic acid. Mol Pharmacol 2003;63: 983–992.PubMedCrossRefGoogle Scholar
  155. 155.
    Wilsey B, Marcotte T, Tsodikov A, et al. A randomized, placebo-controlled, crossover trial of cannabis cigarettes in neuropathic pain. J Pain 2008;9: 506–521.PubMedCrossRefGoogle Scholar
  156. 156.
    Notcutt W, Price M, Miller R, et al. Initial experiences with medicinal extracts of cannabis for chronic pain: results from 34 ‘N of 1’ studies. Anaesthesia 2004;59: 440–452.PubMedCrossRefGoogle Scholar
  157. 157.
    Walker JM, Farney RJ, Rhondeau SM, et al. Chronic opioid use is a risk factor for the development of central sleep apnea and ataxic breathing. J Clin Sleep Med 2007;3: 455–461.PubMedGoogle Scholar
  158. 158.
    Dimsdale JE, Norman D, DeJardin D, Wallace MS. The effect of opioids on sleep architecture. J Clin Sleep Med 2007;3: 33–36.PubMedGoogle Scholar
  159. 159.
    Wade DT, Robson P, House H, Makela P, Aram J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin Rehabil 2003;17: 21–29.PubMedCrossRefGoogle Scholar
  160. 160.
    Wissel J, Haydn T, Muller J, et al. Low dose treatment with the synthetic cannabinoid Nabilone significantly reduces spasticity-related pain: a double-blind placebo-controlled cross-over trial. J Neurol 2006;253: 1337–1341.PubMedCrossRefGoogle Scholar
  161. 161.
    Berlach DM, Shir Y, Ware MA. Experience with the synthetic cannabinoid nabilone in chronic noncancer pain. Pain Med 2006; 7: 25–29.PubMedCrossRefGoogle Scholar
  162. 162.
    Maurer M, Henn V, Dittrich A, Hofmann A. Delta-9-tetrahydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial. Eur Arch Psychiatry Clin Neurosci 1990;240: 1–4.PubMedCrossRefGoogle Scholar
  163. 163.
    Hagenbach U, Luz S, Ghafoor N, et al. The treatment of spasticity with Delta9-tetrahydrocannabinol in persons with spinal cord injury. Spinal Cord 2007;45: 551–562.PubMedCrossRefGoogle Scholar
  164. 164.
    Attal N, Brasseur L, Guirimand D, Clermond-Gnamien S, Atlami S, Bouhassira D. Are oral cannabinoids safe and effective in refractory neuropathic pain? Eur J Pain 2004;8: 173–177.PubMedCrossRefGoogle Scholar
  165. 165.
    Clermont-Gnamien S, Atlani S, Attal N, Le Mercier F, Guirimand F, Brasseur L. [The therapeutic use of D9-tetrahydrocannabinol (dronabinol) in refractory neuropathic pain]. Presse Med 2002; 31: 1840–1845.PubMedGoogle Scholar
  166. 166.
    Frank B, Serpell MG, Hughes J, Matthews JN, Kapur D. Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for chronic neuropathic pain: randomised, crossover, double blind study. Bmj 2008;336: 199–201.PubMedCrossRefGoogle Scholar
  167. 167.
    Pinsger M, Schimetta W, Volc D, Hiermann E, Riederer F, Polz W. [Benefits of an add-on treatment with the synthetic cannabinomimetic nabilone on patients with chronic pain—a randomized controlled trial]. Wien Klin Wochenschr 2006;118: 327–335.PubMedCrossRefGoogle Scholar
  168. 168.
    Narang S, Gibson D, Wasan AD, et al. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain 2008;9: 254–264.PubMedCrossRefGoogle Scholar
  169. 169.
    Toth C, Au S. A prospective identification of neuropathic pain in specific chronic polyneuropathy syndromes and response to pharmacological therapy. Pain 2008;138: 657–666.PubMedCrossRefGoogle Scholar
  170. 170.
    Wang T, Collet JP, Shapiro S, Ware MA. Adverse effects of medical cannabinoids: a systematic review. CMAJ 2008;178: 1669–1678.PubMedGoogle Scholar
  171. 171.
    De Vry J, Kuhl E, Franken-Kunkel P, Eckel G. Pharmacological characterization of the chronic constriction injury model of neuropathic pain. Eur J Pharmacol 2004;491: 137–148.PubMedCrossRefGoogle Scholar
  172. 172.
    Pedersen LH, Blackburn-Munro G. Pharmacological characterisation of place escape/avoidance behaviour in the rat chronic constriction injury model of neuropathic pain. Psychopharmacology (Berl) 2006;185: 208–217.CrossRefGoogle Scholar
  173. 173.
    Hama AT, Urban MO. Antihyperalgesic effect of the cannabinoid agonist WIN55,212-2 is mediated through an interaction with spinal metabotropic glutamate-5 receptors in rats. Neurosci Lett 2004;358: 21–24.PubMedCrossRefGoogle Scholar
  174. 174.
    Yao BB, Hsieh GC, Frost JM, et al. In vitro and in vivo characterization of A-796260: a selective cannabinoid CB2 receptor agonist exhibiting analgesic activity in rodent pain models. Br J Pharmacol 2008;153: 390–401.PubMedCrossRefGoogle Scholar
  175. 175.
    Mitchell VA, Aslan S, Safaei R, Vaughan CW. Effect of the cannabinoid ajulemic acid on rat models of neuropathic and inflammatory pain. Neurosci Lett 2005;382: 231–235.PubMedCrossRefGoogle Scholar
  176. 176.
    Guindon J, Desroches J, Dani M, Beaulieu P. Pre-emptive antinociceptive effects of a synthetic cannabinoid in a model of neuropathic pain. Eur I Pharmacol 2007;568: 173–176.CrossRefGoogle Scholar
  177. 177.
    Valenzano KJ, Tafesse L, Lee G, et al. Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology 2005;48: 658–672.PubMedCrossRefGoogle Scholar
  178. 178.
    Whiteside GT, Gottshall SL, Boulet JM, et al. A role for cannabinoid receptors, but not endogenous opioids, in the antinociceptive activity of the CB2-selective agonist, GW405833. Eur J Pharmacol 2005;528: 65–72.PubMedCrossRefGoogle Scholar
  179. 179.
    Scott DA, Wright CE, Angus JA. Evidence that CB-1 and CB-2 cannabinoid receptors mediate antinociception in neuropathic pain in the rat. Pain 2004;109: 124–131.PubMedCrossRefGoogle Scholar
  180. 180.
    Worm K, Zhou QJ, Saeui CT, et al. Sulfamoyl benzamides as novel CB2 cannabinoid receptor ligands. Bioorg Med Chem Lett 2008;18: 2830–2835.PubMedCrossRefGoogle Scholar
  181. 181.
    Diaz P, Xu J, Astruc-Diaz F, Pan HM, Brown DL, Naguib M. Design and synthesis of a novel series of N-alkyl isatin acylhydrazone derivatives that act as selective cannabinoid receptor 2 agonists for the treatment of neuropathic pain. J Med Chem 2008;51: 4932–4947.PubMedCrossRefGoogle Scholar
  182. 182.
    Dogrul A, Gul H, Yildiz O, Bilgin F, Guzeldemir ME. Cannabinoids blocks tactile allodynia in diabetic mice without attenuation of its antinociceptive effect. Neurosci Lett 2004; 368: 82–86.PubMedCrossRefGoogle Scholar
  183. 183.
    Ulugol A, Karadag HC, Ipci Y, Tamer M, Dokmeci I. The effect of WIN 55,212-2, a cannabinoid agonist, on tactile allodynia in diabetic rats. Neurosci Lett 2004: 371: 167–170.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Neuroscience and Behavior Program, Department of PsychologyUniversity of GeorgiaAthens

Personalised recommendations