Neurotherapeutics

, Volume 6, Issue 4, pp 693–702 | Cite as

Targeting the NMDA receptor subunit NR2B for the treatment of neuropathic pain

Transmitter and Receptor Manipulation

Summary

Neuropathic pain is generally defined as a chronic pain state resulting from peripheral or central nerve injury, or both. An effective treatment for neuropathic pain is still lacking. The NMDA receptor, one type of the ionotropic glutamate receptors, is known to be important for triggering long-lasting changes in synapses. NMDA receptor-dependent synaptic plasticity plays roles not only in physiological functions such as learning and memory, but also in unwanted pathological conditions such as chronic pain. This review addresses recent progress on NMDA receptors in neuropathic pain, with particular emphasis on the NR2B-subunit-containing receptors. The expression and function of NMDA receptors in synaptic plasticity in the pain transmission pathway from dorsal root ganglia to the anterior cingulate cortex is reviewed, and preclinical and clinical investigations of selective NMDA receptor in neuropathic pain are discussed. The NMDA receptors, in particular NR2B-containing NMDA receptors, serve as promising targets for treatment of neuropathic pain.

Key Words

Neuropathic pain glutamate NR2B subunit NMDA receptor anterior cingulated cortex Ro25-6981 

References

  1. 1.
    Wu M, Pang Z, Zhuo M, Xu Z. Prolonged membrane potential depolarization in cingulate pyramidal cells after digit amputation in adult rats. Mol Pain 2005;1: 23.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhuo M. Neuronal mechanism for neuropathic pain. Mol Pain 2007;3: 14.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhuo M. Glutamate receptors and persistent pain: targeting forebrain NR2B subunits. Drug Discov Today 2002;7: 259–267.CrossRefPubMedGoogle Scholar
  4. 4.
    Chizh BA, Headley PM, Tzschentke TM. NMDA receptor antagonists as analgesics: focus on the NR2B subtype. Trends Pharmacol Sci 2001;22: 636–642.CrossRefPubMedGoogle Scholar
  5. 5.
    Childers WE Jr, Baudy RB. N-methyl-d-aspartate antagonists and neuropathic pain: the search for relief. J Med Chem 2007;50: 2557–2562.CrossRefPubMedGoogle Scholar
  6. 6.
    Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-d-aspartate (NMDA) receptors in pain: a review. Anesth Analg 2003;97: 1108–1116.CrossRefPubMedGoogle Scholar
  7. 7.
    Collingridge GL, Bliss TV. Memories of NMDA receptors and LTP. Trends Neurosci 1995;18: 54–56.CrossRefPubMedGoogle Scholar
  8. 8.
    Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 2001;11: 327–335.CrossRefPubMedGoogle Scholar
  9. 9.
    Chatterton JE, Awobuluyi M, Premkumar LS, et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 2002;415: 793–798.PubMedGoogle Scholar
  10. 10.
    Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004;44: 5–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Benke D, Wenzel A, Scheuer L, Fritschy JM, Mohler H. Immunobiochemical characterization of the NMDA-receptor subunit NR1 in the developing and adult rat brain. J Recept Signal Transduct Res 1995;15: 393–411.CrossRefPubMedGoogle Scholar
  12. 12.
    Laurie DJ, Bartke I, Schoepfer R, Naujoks K, Seeburg PH. Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Brain Res Mol Brain Res 1997;51: 23–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu H, Mantyh PW, Basbaum AI. NMDA-receptor regulation of substance P release from primary afferent nociceptors. Nature 1997;386: 721–724.CrossRefPubMedGoogle Scholar
  14. 14.
    Marvizón JC, McRoberts JA, Ennes HS, et al. Two N-methyl-d-aspartate receptors in rat dorsal root ganglia with different subunit composition and localization. J Comp Neurol 2002;446: 325–341.CrossRefPubMedGoogle Scholar
  15. 15.
    Karlsson U, Sjödin J, Angeby Möller K, Johansson S, Wikström L, Näsström J. Glutamate-induced currents reveal three functionally distinct NMDA receptor populations in rat dorsal horn: effects of peripheral nerve lesion and inflammation. Neuroscience 2002;112: 861–868.CrossRefPubMedGoogle Scholar
  16. 16.
    Watanabe M, Inoue Y, Sakimura K, Mishina M. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 1992;3: 1138–1140.CrossRefPubMedGoogle Scholar
  17. 17.
    Boyce S, Wyatt A, Webb JK, et al. Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology 1999;38: 611–623.CrossRefPubMedGoogle Scholar
  18. 18.
    Miki K, Zhou QQ, Guo W, et al. Changes in gene expression and neuronal phenotype in brain stem pain modulatory circuitry after inflammation. J Neurophysiol 2002;87: 750–760.PubMedGoogle Scholar
  19. 19.
    Dracheva S, Byne W, Chin B, Haroutunian V. Ionotropic glutamate receptor mRNA expression in the human thalamus: absence of change in schizophrenia. Brain Res 2008;1214: 23–34.CrossRefPubMedGoogle Scholar
  20. 20.
    Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994;12: 529–540.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhuo M. Plasticity of NMDA receptor NR2B subunit in memory and chronic pain. Mol Brain 2009;2: 4.CrossRefPubMedGoogle Scholar
  22. 22.
    Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000;288: 1765–1769.CrossRefPubMedGoogle Scholar
  23. 23.
    Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 2003;26: 696–705.CrossRefPubMedGoogle Scholar
  24. 24.
    Sandkühler J. Understanding LTP in pain pathways. Mol Pain 2007;3: 9.CrossRefPubMedGoogle Scholar
  25. 25.
    Wei F, Vadakkan Kl, Toyoda H, et al. Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice. J Neurosci 2006;26: 851–861.CrossRefPubMedGoogle Scholar
  26. 26.
    Qu XX, Cai J, Li MJ, et al. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol 2009;215: 298–307.CrossRefPubMedGoogle Scholar
  27. 27.
    Pedersen LM, Gjerstad J. Spinal cord long-term potentiation is attenuated by the NMDA-2B receptor antagonist Ro 25-6981. Acta Physiol (Oxf) 2008;192: 421–427.CrossRefGoogle Scholar
  28. 28.
    Zhang HM, Zhou LJ, Hu XD, Hu NW, Zhang T, Liu XG. Acute nerve injury induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn of intact rat. Sheng Li Xue Bao 2004;56: 591–596.PubMedGoogle Scholar
  29. 29.
    Ikeda H, Stark J, Fischer H, et al. Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science 2006;312: 1659–1662.CrossRefPubMedGoogle Scholar
  30. 30.
    Lenz FA, Gracely RH, Romanoski AJ, Hope EJ, Rowland LH, Dougherty PM. Stimulation in the human somatosensory thalamus can reproduce both the affective and sensory dimensions of previously experienced pain. Nat Med 1995;1: 910–913.CrossRefPubMedGoogle Scholar
  31. 31.
    Banati RB, Cagnin A, Brooks DJ, et al. Long-term trans-synaptic glial responses in the human thalamus after peripheral nerve injury. Neuroreport 2001;12: 3439–3442.CrossRefPubMedGoogle Scholar
  32. 32.
    Landisman CE, Connors BW. Long-term modulation of electrical synapses in the mammalian thalamus. Science 2005;310: 1809–1813.CrossRefPubMedGoogle Scholar
  33. 33.
    Carson LV, Kelahan AM, Ray RH, Massey CE, Doetsch GS. Effects of early peripheral lesions on the somatotopic organization of the cerebral cortex. Clin Neurosurg 1981;28: 532–546.PubMedGoogle Scholar
  34. 34.
    Wei F, Qiu CS, Liauw J, et al. Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci 2002; 5: 573–579.CrossRefPubMedGoogle Scholar
  35. 35.
    Isaac JT, Crair MC, Nicoll RA, Malenka RC. Silent synapses during development of fhalamocortical inputs. Neuron 1997: 18: 269–280.CrossRefPubMedGoogle Scholar
  36. 36.
    Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science 2000;288: 1769–1772.CrossRefPubMedGoogle Scholar
  37. 37.
    Wei F, Wang GD, Kerchner GA, et al. Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat Neurosci 2001;4: 164–169.CrossRefPubMedGoogle Scholar
  38. 38.
    Escobar ML, Chao V, Bermúdez-Rattoni F. In vivo long-term potentiation in the insular cortex: NMDA receptor dependence. Brain Res 1998: 779: 314–319.CrossRefPubMedGoogle Scholar
  39. 39.
    Casey KL. Forebrain mechanisms of nociception and pain: analysis through imaging. Proc Natl Acad Sci U S A 1999: 96: 7668–7674.CrossRefPubMedGoogle Scholar
  40. 40.
    Calejesan AA, Kim SJ, Zhuo M. Descending facilitatory modulation of a behavioral nociceptive response by stimulation in the adult rat anterior cingulate cortex. Eur J Pain 2000;4: 83–96.CrossRefPubMedGoogle Scholar
  41. 41.
    Tang J, Ko S, Ding HK, Qiu CS, Calejesan AA, Zhuo M. Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol Pain 2005;1: 6.CrossRefPubMedGoogle Scholar
  42. 42.
    Wei F, Qiu CS, Kim SJ, et al. Genetic elimination of behavioral sensitization in mice lacking calmodulin-stimulated adenylyl cyclases. Neuron 2002;36: 713–726.CrossRefPubMedGoogle Scholar
  43. 43.
    Wei F, Xia XM, Tang J, et al. Calmodulin regulates synaptic plasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. J Neurosci 2003;23: 8402–8409.PubMedGoogle Scholar
  44. 44.
    Liauw J, Wu LJ, Zhuo M. Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex. J Neurophysiol 2005;94: 878–882.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhao MG, Toyoda H, Lee YS, et al. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory. Neuron 2005;47: 859–872.CrossRefPubMedGoogle Scholar
  46. 46.
    Wei F, Zhuo M. Potentiation of sensory responses in the anterior cingulate cortex following digit amputation in the anaesthetised rat. J Physiol 2001;532: 823–833.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhuo M. Central plasticity in pathological pain. Novartis Found Symp 2004;261: 132–145;discussion 145–154.CrossRefPubMedGoogle Scholar
  48. 48.
    Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 2007;7: 39–47.CrossRefPubMedGoogle Scholar
  49. 49.
    Gogas KR. Glutamate-based therapeutic approaches: NR2B receptor antagonists. Curr Opin Pharmacol 2006;6: 68–74.CrossRefPubMedGoogle Scholar
  50. 50.
    Fischer G, Mutel V, Trube G, et al. Ro 25-6981, a highly potent and selective blocker of N-methyl-d-aspartate receptors containing the NR2B subunit: characterization in vitro. J Pharmacol Exp Ther 1997;283: 1285–1292.PubMedGoogle Scholar
  51. 51.
    Williams K. Ifenprodil discriminates subtypes of the N-methyl-d-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 1993;44: 851–859.PubMedGoogle Scholar
  52. 52.
    Auberson YP, Allgeier H, Bischoff S, Lingenhoehl K, Moretti R, Schmutz M. 5-Phosphonomethylquinoxalinediones as competitive NMDA receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg Med Chem Lett 2002;12: 1099–1102.CrossRefPubMedGoogle Scholar
  53. 53.
    Liu L, Wong TP, Pozza MF, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 2004;304: 1021–1024.CrossRefPubMedGoogle Scholar
  54. 54.
    Massey PV, Johnson BE, Moult PR, et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 2004;24: 7821–7828.CrossRefPubMedGoogle Scholar
  55. 55.
    Morishita W, Lu W, Smith GB, Nicoll RA, Bear MF, Malenka RC. Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology 2007;52: 71–76.CrossRefPubMedGoogle Scholar
  56. 56.
    Bartlett TE, Bannister NJ, Collett VJ, et al. Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology 2007;52: 60–70.CrossRefPubMedGoogle Scholar
  57. 57.
    Frizelle PA, Chen PE, Wyllie DJ. Equilibrium constants for (R)-[(S)-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-methyl-D-aspartate receptors: Implications for studies of synaptic transmission. Mol Pharmacol 2006;70: 1022–1032.CrossRefPubMedGoogle Scholar
  58. 58.
    Feng B, Tse HW, Skifter DA, Morley R, Jane DE, Monaghan DT. Structure—activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid. Br J Pharmacol 2004;141: 508–516.CrossRefPubMedGoogle Scholar
  59. 59.
    Wu LJ, Xu H, Ren M, Cao X, Zhuo M. Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex. Mol Pain 2007;3: 11.CrossRefPubMedGoogle Scholar
  60. 60.
    Hrabetova S, Serrano P, Blace N, et al. Distinct NMDA receptor subpopulations contribute to long-term potentiation and long-term depression induction. J Neurosci 2000;20: RC81:1–6.PubMedGoogle Scholar
  61. 61.
    Omote K, Kawamata T, Kawamata M, Namiki A. Formalin-induced release of excitatory amino acids in the skin of the rat hindpaw. Brain Res 1998;787: 161–164.CrossRefPubMedGoogle Scholar
  62. 62.
    Carlton SM, Coggeshall RE. Inflammation-induced changes in peripheral glutamate receptor populations. Brain Res 1999;820: 63–70.CrossRefPubMedGoogle Scholar
  63. 63.
    Wilson JA, Garry EM, Anderson HA, et al. NMDA receptor antagonist treatment at the time of nerve injury prevents injury-induced changes in spinal NR1 and NR2B subunit expression and increases the sensitivity of residual pain behaviours to subsequently administered NMDA receptor antagonists. Pain 2005;117: 421–432.CrossRefPubMedGoogle Scholar
  64. 64.
    Burton AW, Lee DH, Saab C, Chung JM. Preemptive intrathecal ketamine injection produces a long-lasting decrease in neuropathic pain behaviors in a rat model. Reg Anesth Pain Med 1999;24: 208–213.PubMedGoogle Scholar
  65. 65.
    South SM, Kohno T, Kaspar BK, et al. A conditional deletion of the NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn reduces NMDA currents and injury-induced pain. J Neurosci 2003;23: 5031–5040.PubMedGoogle Scholar
  66. 66.
    Petrenko AB, Yamakura T, Baba H, Sakimura K. Unaltered pain-related behavior in mice lacking NMDA receptor GluRε 1 subunit. Neurosci Res 2003;46: 199–204.PubMedGoogle Scholar
  67. 67.
    Malmberg AB, Gilbert H, McCabe RT, Basbaum AI. Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 2003;101: 109–116.CrossRefPubMedGoogle Scholar
  68. 68.
    Terayama R, Guan Y, Dubner R, Ren K. Activity-induced plasticity in brain stem pain modulatory circuitry after inflammation. Neuroreport 2000;11: 1915–1919.CrossRefPubMedGoogle Scholar
  69. 69.
    Tang YP, Shimizu E, Dube GR, et al. Genetic enhancement of learning and memory in mice. Nature 1999: 401: 63–69.CrossRefPubMedGoogle Scholar
  70. 70.
    Quintero GC, Erzurumlu RS, Vaccarino AL. Decreased pain response in mice following cortex-specific knockout of the N-methyl-d-aspartate NR1 subunit Neurosci Lett 2007;425: 89–93.CrossRefPubMedGoogle Scholar
  71. 71.
    Wu LJ, Toyoda H, Zhao MG, et al. Upregulation of forebrain NMDA NR2B receptors contributes to behavioral seusitization after inflammation. J Neurosci 2005;25: 11107–11016.CrossRefPubMedGoogle Scholar
  72. 72.
    Shum FW, Wu LJ, Zhao MG, et al. Alteration of cingulate long-term plasticity and behavioral sensitization to inflammation by environmental enrichment. Learn Mem 2007;14: 304–312.CrossRefPubMedGoogle Scholar
  73. 73.
    Xu H, Wu LJ, Wang H, et al. Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci 2008;28: 7445–7453.CrossRefPubMedGoogle Scholar
  74. 74.
    Kristensen JD, Svensson B, Gordh T Jr. The, NMDA-receptor antagonist CPP abolishes neurogenic ‘wind-up pain’ after intrathecal administration in humans. Pain 1992;51: 249–253.CrossRefPubMedGoogle Scholar
  75. 75.
    Brandt MR, Cummons TA, Potestio L, Sukoff SJ, Rosenzweig-Lipson S. Effects of the N-methyl-d-aspartate receptor antagonist perzinfotel [EAA-090;[2-(8,9-dioxo-2,6-diazabicyclo[5.2.0]non-1(7)-en-2-yl)-ethyl]phosphonic acid] on chemically induced thermal hypersensitivity. J Pharmacol Exp Ther 2005;313: 1379–1386.CrossRefPubMedGoogle Scholar
  76. 76.
    Baudy RB, Butera JA, Abou-Gharbia MA, et al. Prodrugs of perzinfotel with improved oral bioavailability. J Med Chem 2009; 52: 771–778.CrossRefPubMedGoogle Scholar
  77. 77.
    Chizh BA, Headley PM. NMDA antagonists and neuropathic pain: multiple drug targets and multiple uses. Curr Pharm Des 2005;11: 2977–2994.CrossRefPubMedGoogle Scholar
  78. 78.
    Hocking G, Cousins M.T. Ketarmne in chronic pain management: an evidence-based review. Anesth Analg 2003;97: 1730–1739.CrossRefPubMedGoogle Scholar
  79. 79.
    Mathisen LC, Skjelbred P, Skoglund LA, Oye I. Effect of ketamine, an NMDA receptor inhibitor, in acute and chronic orofacial pain. Pain 1995;61: 215–220.CrossRefPubMedGoogle Scholar
  80. 80.
    Nelson KA, Park KM, Robinovitz E, Tsigos C, Max MB. High-dose oral dextromethorphan versus placebo in painful diabetic neuropathy and postherpetic neuralgia. Neurology 1997;48: 1212–1218.PubMedGoogle Scholar
  81. 81.
    Sang CN, Booher S, Gilron I, Parada S, Max MB. Dextromethorphan and memantine in painful diabetic neuropathy and postherpetic neuralgia: efficacy and dose-response trials. Anesthesiology 2002;96: 1053–1061.CrossRefPubMedGoogle Scholar
  82. 82.
    Pud D, Eisenberg E, Spitzer A, et al. The NMDA receptor antagonist amantadine reduces surgical neuropathic pain in cancer patients: a double blind, randomized, placebo controlled trial. Pain 1998;75: 349–354.CrossRefPubMedGoogle Scholar
  83. 83.
    Gurwitz D, Weizman A. The NR2B subunit of glutamate receptors as a potential target for relieving chronic pain: prospects and concerns. Drug Discov Today 2002;7: 403–406.CrossRefPubMedGoogle Scholar
  84. 84.
    Ko SW, Wu LJ, Shum F, Quan J, Zhuo M. Cingulate NMDA NR2B receptors contribute to morphine-induced analgesic tolerance. Mol Brain 2008;1: 2.CrossRefPubMedGoogle Scholar
  85. 85.
    Narita M, Aoki T, Suzuki T. Molecular evidence for the involvement of NR2B subunit containing N-methyl-d-aspartate receptors in the development of morphine-induced place preference. Neuroscience 2000;101: 601–606.CrossRefPubMedGoogle Scholar
  86. 86.
    Nakazato E, Kato A, Watanabe S. Brain but not spinal NR2B receptor is responsible for the anti-allodynic effect of an NR2B subunit-selective antagonist CP-101,606 in a rat chronic constriction injury model. Pharmacology 2005;73: 8–14.CrossRefPubMedGoogle Scholar
  87. 87.
    Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO. Pain-related neurons in the human cingulate cortex. Nat Neurosci 1999;2: 403–405.CrossRefPubMedGoogle Scholar
  88. 88.
    Köhr G. NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 2006;326: 439–446.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of Medicine, University of Toronto Centre for the Study of PainUniversity of TorontoTorontoCanada
  2. 2.Department of Brain and Cognitive SciencesSeoul National UniversitySeoulKorea

Personalised recommendations