Neurotherapeutics

, Volume 6, Issue 4, pp 630–637 | Cite as

Postherpetic neuralgia: From preclinical models to the clinic

  • Ada Delaney
  • Lesley A. Colvin
  • Marie T. Fallon
  • Robert G. Dalziel
  • Rory Mitchell
  • Susan M. Fleetwood-Walker
Preclinical Models of Neuropathic Pain

Summary

Postherpetic neuralgia (PHN), a common complication of herpes zoster, which results from reactivation of varicella zoster virus, is a challenging neuropathic pain syndrome. The incidence and severity of herpes zoster and PHN increases with immune impairment or age and may become a greater burden both in terms of health economics and individual suffering. A clearer understanding of the underlying mechanisms of this disease and translation of preclinical outcomes to the clinic may lead to more efficacious treatment options. Here we give an overview of recent findings from preclinical models and clinical research on PHN.

Key Words

Postherpetic neuralgia herpes zoster varicella zoster virus animal model chronic pain analgesia 

References

  1. 1.
    Cohrs RJ, Gilden DH, Mahalingam R. Varicella zoster virus latency, neurological disease and experimental models: an update. Front Biosci 2004;9: 751–762.PubMedGoogle Scholar
  2. 2.
    Wu CL, Raja SN. An update on the treatment of postherpetic neuralgia. J Pain 2008;9(1 Suppl 1): S19-S30.PubMedGoogle Scholar
  3. 3.
    Seward J, Galil K, Wharton M. Epidemiology of varicella. In: Arvin AM, Gershon AA, editors. Varicella-zoster virus: virology and clinical management. Cambridge: Cambridge University Press, 2000: 187–205.Google Scholar
  4. 4.
    Oxman MN. Clinical manifestations of herpes zoster. In: Arvin AM, Gershon AA. Varicella-zoster virus: Virology and clinical management. Cambridge: Cambridge University Press, 2000: 246–275.Google Scholar
  5. 5.
    Sampathkumar P, Drage LA, Martin DP. Herpes zoster (shingles) and postherpetic neuralgia. Mayo Clin Proc 2009;84: 274–280.PubMedGoogle Scholar
  6. 6.
    Dworkin RH, Nagasako EM, Johnson RW, Griffin DR. Acute pain in herpes zoster: the famciclovir database project. Pain 2001; 94: 113–119.PubMedGoogle Scholar
  7. 7.
    Haanpää M, Laippala P, Nurmikko T. Pain and somatosensory dysfunction in acute herpes zoster. Clin J Pain 1999;15: 78–84.PubMedGoogle Scholar
  8. 8.
    Haanpää M, Laippala P, Nurmikko T. Allodynia and pinprick hypesthesia in acute herpes zoster, and the development of postherpetic neuralgia. J Pain Symptom Manage 2000;20: 50–58.PubMedGoogle Scholar
  9. 9.
    Hope-Simpson RE. Postherpetic neuralgia. J R Coll Gen Pract 1975;25: 571–575.PubMedGoogle Scholar
  10. 10.
    Meister W, Neiss A, Gross G, et al. A prognostic score for postherpetic neuralgia in ambulatory patients. Infection 1998;26: 359–363.PubMedGoogle Scholar
  11. 11.
    Ragozzino MW, Melton LJ 3rd, Kurland LT, Chu CP, Perry HO. Population-based study of herpes zoster and its sequelae. Medicine (Baltimore) 1982;61: 310–316.Google Scholar
  12. 12.
    Hall GC, Carroll D, Parry D, McQuay HJ. Epidemiology and treatment of neuropathic pain: the UK primary care perspective. Pain 2006;122: 156–162.PubMedGoogle Scholar
  13. 13.
    Gauthier A, Breuer J, Carrington D, Martin M, Rémy V. Epidemiology and cost of herpes zoster and post-herpetic neuralgia in the United Kingdom. Epidemiol Infect 2009;137: 38–47.PubMedGoogle Scholar
  14. 14.
    Schmader K, Gnann JW Jr, Watson CP. The epidemiological, clinical, and pathological rationale for the herpes zoster vaccine. J Infect Dis 2008;197 Suppl 2: S207-S215.PubMedGoogle Scholar
  15. 15.
    Dworkin RH, Schmader KE. Treatment and prevention of postherpetic neuralgia. Clin Infect Dis 2003;36: 877–882.PubMedGoogle Scholar
  16. 16.
    Wood MJ, Johnson RW, McKendrick MW, Taylor J, Mandai BK, Crooks J. A randomized trial of acyclovir for 7 days or 21 days with and without prednisolone for treatment of acute herpes zoster. N Engl J Med 1994;330: 896–900.PubMedGoogle Scholar
  17. 17.
    Nagasako EM, Johnson RW, Griffin DR, Dworkin RH. Rash severity in herpes zoster: correlates and relationship to postherpetic neuralgia. J Am Acad Dermatol 2002;46: 834–839.PubMedGoogle Scholar
  18. 18.
    Volpi A, Gatti A, Pica F, Bellino S, Marsella LT, Sabato AF. Clinical and psychosocial correlates of post-herpetic neuralgia. J Med Virol 2008;80: 1646–1652.PubMedGoogle Scholar
  19. 19.
    Dworkin RH, Johnson RW, Breuer J, et al. Recommendations for the management of herpes zoster. Clin Infect Dis 2007;44 Suppl 1: S1–26.PubMedGoogle Scholar
  20. 20.
    Thyregod HG, Rowbotham MC, Peters M, Possehn J, Berro M, Petersen KL. Natural history of pain following herpes zoster. Pain 2007;128: 148–156.PubMedGoogle Scholar
  21. 21.
    Dworkin RH, Gnann JW Jr, Oaklander AL, Raja SN, Schmader KE, Whitley RJ. Diagnosis and assessment of pain associated with herpes zoster and postherpetic neuralgia. J Pain 2008;9(1 Suppl 1): S37-S44.PubMedGoogle Scholar
  22. 22.
    Schmader K. Postherpetic neuralgia in immunocompetent elderly people. Vaccine 1998;16: 1768–1770.PubMedGoogle Scholar
  23. 23.
    Fields HL, Rowbotham M, Baron R. Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol Dis 1998;5: 209–227.PubMedGoogle Scholar
  24. 24.
    Oxman MN, Levin MJ, Johnson GR, et al.; Shingles Prevention Study Group. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med 2005;352: 2271–2284.PubMedGoogle Scholar
  25. 25.
    Arani RB, Soong SJ, Weiss HL, et al. Phase specific analysis of herpes zoster associated pain data: a new statistical approach. Stat Med 2001;20: 2429–2439.PubMedGoogle Scholar
  26. 26.
    Desmond RA, Weiss HL, Arani RB, et al. Clinical applications for change-point analysis of herpes zoster pain. J Pain Symptom Manage 2002;23: 510–516.PubMedGoogle Scholar
  27. 27.
    Jung BF, Johnson RW, Griffin DR, Dworkin RH. Risk factors for postherpetic neuralgia in patients with herpes zoster. Neurology 2004;62: 1545–1551.PubMedGoogle Scholar
  28. 28.
    Dworkin RH, Portenoy RK. Pain and its persistence in herpes zoster. Pain 1996;67: 241–251.PubMedGoogle Scholar
  29. 29.
    Oaklander AL. The density of remaining nerve endings in human skin with and without postherpetic neuralgia after shingles [Erratum in: Pain 2001;94:325]. Pain 2001;92: 139–145.PubMedGoogle Scholar
  30. 30.
    Rowbotham MC, Yosipovitch G, Connolly MK, Finlay D, Forde G, Fields HL. Cutaneous innervation density in the allodynic form of postherpetic neuralgia. Neurobiol Dis 1996;3: 205–214.PubMedGoogle Scholar
  31. 31.
    Baron R, Saguer M. Postherpetic neuralgia. Are C-nociceptors involved in signalling and maintenance of tactile allodynia? Brain 1993;116: 1477–1496.PubMedGoogle Scholar
  32. 32.
    Baron R, Saguer M. Mechanical allodynia in postherpetic neuralgia: evidence for central mechanisms depending on nociceptive C-fiber degeneration. Neurology 1995;45(12 Suppl 8): S63-S65.PubMedGoogle Scholar
  33. 33.
    Truini A, Galeotti F, Haanpaa M, et al. Pathophysiology of pain in postherpetic neuralgia: a clinical and neurophysiological study. Pain 2008;140: 405–410.PubMedGoogle Scholar
  34. 34.
    Nurmikko T, Bowsher D. Somatosensory findings in postherpetic neuralgia. J Neurol Neurosurg Psychiatry 1990;53: 135–141.PubMedGoogle Scholar
  35. 35.
    Geha PY, Baliki MN, Wang X, Harden RN, Paice JA, Apkarian AV. Brain dynamics for perception of tactile allodynia (touch-induced pain) in postherpetic neuralgia. Pain 2008;138: 641–656.PubMedGoogle Scholar
  36. 36.
    Scholz J, Broom DC, Youn DH, et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 2005;25: 7317–7323.PubMedGoogle Scholar
  37. 37.
    Ji RR, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis 2001;8: 1–10.PubMedGoogle Scholar
  38. 38.
    Tal M, Bennett GJ. Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 1994;57: 375–382.PubMedGoogle Scholar
  39. 39.
    Pappagallo M, Oaklander AL, Quatrano-Piacentini AL, Clark MR, Raja SN. Heterogenous patterns of sensory dysfunction in postherpetic neuralgia suggest multiple pathophysiologic mechanisins. Anesthesiology 2000;92: 691–698.PubMedGoogle Scholar
  40. 40.
    Sadzot-Delvaux C, Merville-Louis MP, Delrée P, et al. An in vivo model of varicella-zoster virus latent infection of dorsal root ganglia. J Neurosci Res 1990;26: 83–89.PubMedGoogle Scholar
  41. 41.
    Garry EM, Delaney A, Anderson HA, et al. Varicella zoster virus induces neuropathic changes in rat dorsal root ganglia and behavioral reflex sensitisation that is attenuated by gabapentin or sodium channel blocking drugs. Pain 2005;118: 97–111.PubMedGoogle Scholar
  42. 42.
    Dalziel RG, Bingham S, Sutton D, et al. Allodynia in rats infected with varicella zoster virus: a small animal model for post-herpetic neuralgia. Brain Res Brain Res Rev 2004;46: 234–242.PubMedGoogle Scholar
  43. 43.
    Hasnie FS, Breuer J, Parker S, et al. Further characterization of a rat model of varicella zoster virus-associated pain: relationship between mechanical hypersensitivity and anxiety-related behavior, and the influence of analgesic drags. Neuroscience 2007;144: 1495–1508.PubMedGoogle Scholar
  44. 44.
    Oliver SL, Zerboni L, Sommer M, Rajamani J, Arvin AM. Development of recombinant varicella-zoster viruses expressing luciferase fusion proteins for live in vivo imaging in human skin and dorsal root ganglia xenografts. J Virol Methods 2008;154: 182–193.PubMedGoogle Scholar
  45. 45.
    Kinchington PR, Hougland JK, Arvin AM, Ruyechan WT, Hay J. The varicella-zoster virus immediate-early protein IE62 is a major component of virus particles. J Virol 1992;66: 359–366.PubMedGoogle Scholar
  46. 46.
    Sato B, Ito H, Hinchliffe S, Sommer MH, Zerboni L, Arvin AM. Mutational analysis of open reading frames 62 and 71, encoding the varicella-zoster virus immediate-early transactivating protein, IE62, and effects on replication in vitro and in skin xenografts in the SCID-hu mouse in vivo. J Virol 2003;77: 5607–5620.PubMedGoogle Scholar
  47. 47.
    Kress M, Fickenscher H. Infection by human varicella-zoster virus confers norepinephrine sensitivity to sensory neurons from rat dorsal root ganglia. FASEB J 2001;15: 1037–1043.PubMedGoogle Scholar
  48. 48.
    Cummins TR, Dib-Hajj SD, Black JA, Waxman SG. Sodium channels and the molecular pathophysiology of pain. Prog Brain Res 2000;129: 3–19.PubMedGoogle Scholar
  49. 49.
    Hökfelt T, Zhang X, Wieseufeld-Hallin Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 1994;17: 22–30.PubMedGoogle Scholar
  50. 50.
    Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000;288: 1765–1769.PubMedGoogle Scholar
  51. 51.
    Xiao IIS, Huang QH, Zhang FX, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A 2002;99: 8360–8365.PubMedGoogle Scholar
  52. 52.
    Villar MJ, Wiesenfeld-Hallin Z, Xu XJ, Theodorsson E, Emson PC, Hökfelt T. Further studies on galanin-, substance P-, and CGRP-like immunoreactivities in primary sensory neurons and spinal cord: effects of dorsal rhizotomies and sciatic nerve lesions. Exp Neurol 1991;112: 29–39.PubMedGoogle Scholar
  53. 53.
    Tsujino H, Kondo E, Fukuoka T, et al. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci 2000;15: 170–182.PubMedGoogle Scholar
  54. 54.
    Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 1999;353: 1959–1964.PubMedGoogle Scholar
  55. 55.
    Woolf CJ, Costigan M. Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proc Natl Acad Sci U S A 1999: 96: 7723–7730.PubMedGoogle Scholar
  56. 56.
    Waxman SG. The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability of primary sensory neurons. Pain 1999;82 Suppl 1: S133-S140.Google Scholar
  57. 57.
    Black JA, Waxman SG. Sodium channel expression: a dynamic process in neurons and non-neuronal cells. Dev Neurosci 1996; 18: 139–152.PubMedGoogle Scholar
  58. 58.
    Kim CH, Oh Y, Chung JM, Chung K. The changes in expression of three subtypes of TTX sensitive sodium channels in sensory neurons after spinal nerve ligation. Brain Res Mol Brain Res 2001: 95: 153–161.PubMedGoogle Scholar
  59. 59.
    Porreca F, Lai J, Bian D, et al. A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain [Erratum in: Proc Natl Acad Sci U S A 1999:96:10548]. Proc Natl Acad Sci U S A 1999: 96: 7640–7644.PubMedGoogle Scholar
  60. 60.
    Erichsen HK, Blackburn-Munro G. Pharmacological characterisation of the spared nerve injury model of neuropathic pain. Pain 2002: 98: 151–161.PubMedGoogle Scholar
  61. 61.
    Erichsen HK, Hao JX, Xu XJ, Blackburn-Munro G. A comparison of the antinociceptive effects of voltage-activated Na+ channel blockers in two rat models of neuropathic pain. Eur J Pharmacol 2003;458: 275–282.PubMedGoogle Scholar
  62. 62.
    Laughlin TM, Tram KV, Wilcox GL, Birnbaum AK. Comparison of antiepileptic drugs tiagabine, lamotrigine, and gabapentin in mouse models of acute, prolonged, and chronic nociception. J Pharmacol Exp Ther 2002;302: 1168-l 175.PubMedGoogle Scholar
  63. 63.
    Chabal C, Jacobsou L, Mariano A, Chaney E, Britell CW. The use of oral mexiletine for the treatment of pain after peripheral nerve injury. Anesthesiology 1992;76: 513–517.PubMedGoogle Scholar
  64. 64.
    Bayer K, Ahmadi S, Zeilhofer HU. Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels. Neuropharmacology 2004;46: 743–749.PubMedGoogle Scholar
  65. 65.
    Luo ZD, Calcutt NA, Higuera ES, et al. Injury type-specific calcium channel α2δ-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 2002;303: 1199–1205.PubMedGoogle Scholar
  66. 66.
    Newton RA, Bingham S, Case PC, Sanger GJ, Lawson SN. Dorsal root ganglion neurons show increased expression of the calcium channel α2δ-1 subunit following partial sciatic nerve injury. Brain Res Mol Brain Res 2001;95: 1–8.PubMedGoogle Scholar
  67. 67.
    Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 2004; 10: 685–692.PubMedGoogle Scholar
  68. 68.
    Kanai A, Sarantopoulos C, McCallum JB, Hogan Q. Painful neuropathy alters the effect of gabapentin on sensory neuron excitability in rats. Acta Anaesthesiol Scand 2004;48: 507–512.PubMedGoogle Scholar
  69. 69.
    Pan HL, Eisenach JC, Chen SR. Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats. J Pharmacol Exp Ther 1999;288: 1026–1030.PubMedGoogle Scholar
  70. 70.
    Hunter JC, Gogas KR, Hedley LR, et al. The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur J Pharmacol 1997;324: 153–160.PubMedGoogle Scholar
  71. 71.
    Abdi S, Lee DH, Chung JM. The anti-allodynic effects of amitriptyline, gabapentin, and lidocaine in a rat model of neuropathic pain. Anesth Analg 1998;87: 1360–1366.PubMedGoogle Scholar
  72. 72.
    Mao J, Chen LL. Gabapentin in pain management. Anesth Analg 2000;91: 680–687.PubMedGoogle Scholar
  73. 73.
    Beydoun A. Postherpetic neuralgia: role of gabapentin and other treatment modalities. Epilepsia 1999;40 Suppl 6: S51-S56.PubMedGoogle Scholar
  74. 74.
    Rowbotham M, Harden N, Stacey B, Bernstein P, Magnus-Miller L. Gabapeutin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA 1998;280: 1837–1842.PubMedGoogle Scholar
  75. 75.
    Chaplan SR, Malmberg AB, Yaksh TL. Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. J Pharmacol Exp Ther 1997;280: 829–838.PubMedGoogle Scholar
  76. 76.
    Dickenson AH, Sullivan AF. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology 1987;26: 1235–1238.PubMedGoogle Scholar
  77. 77.
    Hocking G, Cousins MJ. Ketamine in chronic pain management: an evidence-based review. Anesth Analg 2003;97: 1730–1739.PubMedGoogle Scholar
  78. 78.
    Sang CN, Booher S, Gilron I, Parada S, Max MB. Dextromethorphan and memantine in painful diabetic neuropathy and postherpetic neuralgia: efficacy and dose-response trials. Anesthesiology 2002;96: 1053–1061.PubMedGoogle Scholar
  79. 79.
    Hempenstall K, Nurmikko TJ, Johnson RW, A’Hern RP, Rice AS. Analgesic therapy in postherpetic neuralgia: a quantitative systematic review. PLoS Med 2005;2: e164.PubMedGoogle Scholar
  80. 80.
    Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 2005;65: 812–819.PubMedGoogle Scholar
  81. 81.
    Sindrup SH, Otto M, Finnerup NB, Jensen TS. Antidepressants in the treatment of neuropathic pain. Basic Clin Pharmacol Toxicol 2005;96: 399–409.PubMedGoogle Scholar
  82. 82.
    Meyer-Rosberg K, Kvarnström A, Kinnman E, Gordh T, Nordfors LO, Kristofferson A. Peripheral neuropathic pain: a multidimensional burden for patients. Eur J Pain 2001;5: 379–389.PubMedGoogle Scholar
  83. 83.
    Nicholson B, Verma S. Comorbidities in chronic neuropathic pain. Pain Med 2004;5 Suppl 1: S9-S27.PubMedGoogle Scholar
  84. 84.
    Reichelt M, Zerboni L, Arvin AM. Mechanisms of varicellazoster virus neuropathogenesis in human dorsal root ganglia. J Virol 2008;82: 3971–3983.PubMedGoogle Scholar
  85. 85.
    Jensen TS, Baron R. Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 2003;102: 1–8.PubMedGoogle Scholar
  86. 86.
    Cruccu G, Anand P, Attal N, et al. EFNS guidelines on neuropathic pain assessment. Eur J Neurol 2004;11: 153–162.PubMedGoogle Scholar
  87. 87.
    Rowbotham MC, Fields HL. The relationship of pain, allodynia and thermal sensation in post-herpetic neuralgia. Brain 1996;119: 347–354.PubMedGoogle Scholar
  88. 88.
    Bowsher D. The effects of pre-emptive treatment of post-herpetic neuralgia with amitriptyline: a randomized, double-blind, placebo-controlled trial. J Pain Symptom Manage 1997: 13: 327–331.PubMedGoogle Scholar
  89. 89.
    Schmader KE, Dworkin RH. Natural history and treatment of herpes zoster. J Pain 2008;9(1 Suppl 1): S3-S9.PubMedGoogle Scholar
  90. 90.
    Surman OS, Flynn T, Schooley RT, et al. A double-blind, placebo-controlled study of oral acyclovir in postherpetic neuralgia. Psychosomatics 1990;31: 287–292.PubMedGoogle Scholar
  91. 91.
    Whitley RJ, Weiss H, Gnann JW Jr, et al.; The National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. Acyclovir with and without prednisone for the treatment of herpes zoster: a randomized, placebo-controlled trial. Ann Intern Med 1996;125: 376–383.PubMedGoogle Scholar
  92. 92.
    Dworkin RH, Perkins FM, Nagasako EM. Prospects for the prevention of postherpetic neuralgia in herpes zoster patients. Clin J Pain 2000;16(2 Suppl): S90-S100.PubMedGoogle Scholar
  93. 93.
    Dick IE, Brochu RM, Purohit Y, Kaczorowski GJ, Martin WJ, Priest BT. Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. J Pain 2007;8: 315–324.PubMedGoogle Scholar
  94. 94.
    Zin CS, Nissen LM, Smith MT, O’Callaghan JP, Moore BJ. An update on the pharmacological management of post-herpetic neuralgia and painful diabetic neuropathy. CNS Drugs 2008;22: 417–442.PubMedGoogle Scholar
  95. 95.
    Rice AS, Maton S. Gabapentin in postherpetic neuralgia: a randomised, double blind, placebo controlled study. Pain 2001;94: 215–224.PubMedGoogle Scholar
  96. 96.
    Gilron I, Biederman J, Jhamandas K, Hong M. Gabapentin blocks and reverses antinociceptive morphine tolerance in the rat pawpressure and tail-flick tests. Anesthesiology 2003;98: 1288–1292.PubMedGoogle Scholar
  97. 97.
    Frampton JE, Foster RH. Pregabalin: in the treatment of postherpetic neuralgia. Drags 2005;65: 111–118.Google Scholar
  98. 98.
    Sabatowski R, Gálvez R, Cherry DA, et al. Pregabalin reduces pain and improves sleep and mood disturbances in patients with post-herpetic neuralgia: results of a randomised, placebo-controlled clinical trial. Pain 2004;109: 26–35.PubMedGoogle Scholar
  99. 99.
    Stacey BR, Barrett JA, Whalen E, Phillips KF, Rowbotham MC. Pregabalin for postherpetic neuralgia: placebo-controlled trial of fixed and flexible dosing regimens on allodynia and time to onset of pain relief. J Pain 2008;9: 1006–1017.PubMedGoogle Scholar
  100. 100.
    Baron R, Brunnmüller U, Brasser M, May M, Binder A. Efficacy and safety of pregabalin in patients with diabetic peripheral neuropathy or postherpetic neuralgia: open-label, non-comparative, flexible-dose study. Eur J Pain 2008;12: 850–858.PubMedGoogle Scholar
  101. 101.
    Attal N, Cruccu G, Haanpää M, et al. EFNS guidelines on pharmacological treatment of neuropathic pain. Eur J Neurol 2006; 13: 1153–1169.PubMedGoogle Scholar
  102. 102.
    Dworkin RH, O’Connor AB, Backonja M, et al. Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 2007;132: 237–251.PubMedGoogle Scholar
  103. 103.
    Moulin DE, Clark AJ, Gilron I, et al. Pharmacological management of chronic neuropathic pain: consensus statement and guidelines from the Canadian Pain Society. Pain Res Manag 2007: 12: 13–21.PubMedGoogle Scholar
  104. 104.
    Watson CP, Babul N. Efficacy of oxycodone in neuropathic pain: a randomized trial in postherpetic neuralgia. Neurology 1998: 50: 1837–1841.PubMedGoogle Scholar
  105. 105.
    Rowbotham MC, Reisner-Keller LA, Fields HL. Both intravenous lidocaine and morphine reduce the pain of postherpetic neuralgia. Neurology 1991;41: 1024–1028.PubMedGoogle Scholar
  106. 106.
    Boureau F, Legallicier P, Kabir-Ahmadi M. Tramadol in postherpetic neuralgia: a randomized, double-blind, placebo-controlled trial. Pain 2003;104: 323–331.PubMedGoogle Scholar
  107. 107.
    Petersen KL, Fields HL, Brennum J, Sandroni P, Rowbotham MC. Capsaicin evoked pain and allodynia in post-heipetic neuralgia. Pain 2000;88: 125–133.PubMedGoogle Scholar
  108. 108.
    Davies PS, Galer BS. Review of lidocaine patch 5% studies in the treatment of postherpetic neuralgia. Drugs 2004;64: 937–947.PubMedGoogle Scholar
  109. 109.
    Galer BS, Rowbotham MC, Perander J, Friedman E. Topical lidocaine patch relieves postherpetic neuralgia more effectively than a vehicle topical patch: results of an enriched enrollment study. Pain 1999: 80: 533–538.PubMedGoogle Scholar
  110. 110.
    Meier T, Wasner G, Faust M, et al. Efficacy of lidocaine patch 5% in the treatment of focal peripheral neuropathic pain syndromes: a randomized, double-blind, placebo-controlled study. Pain 2003; 106: 151–158.PubMedGoogle Scholar
  111. 111.
    Galer BS, Jensen MP, Ma T, Davies PS, Rowbotham MC. The lidocaine patch 5% effectively treats all neuropathic pain qualities: results of a randomized, double-blind, vehicle-controlled, 3-week efficacy study with use of the neuropathic pain scale. Clin J Pain 2002;18: 297–301.PubMedGoogle Scholar
  112. 112.
    Wasner G, Kleinert A, Binder A, Schattschneider J, Baron R. Postherpetic neuralgia: topical lidocaine is effective in nociceptor-deprived skin. J Neurol 2005;252: 677–686.PubMedGoogle Scholar
  113. 113.
    Watson CP, Tyler KL, Bickers DR, Millikan LE, Smith S, Coleman E. A randomized vehicle-controlled trial of topical capsaicin in the treatment of postherpetic neuralgia. Clin Ther 1993; 15: 510–526.PubMedGoogle Scholar
  114. 114.
    Backonja M, Wallace MS, Blonsky ER, et al.; NGX-4010 C116 Study Group. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomised, double-blind study [Erratum in: Lancet Neurol 2009;8:31]. Lancet Neurol 2008;7: 1106–1112.PubMedGoogle Scholar
  115. 115.
    Binder A, Baron R. Postherpetic neuralgia: fighting pain with fire. Lancet Neurology 2008;7: 1077–1078.PubMedGoogle Scholar
  116. 116.
    Wu CL, Marsh A, Dworkin RH. The role of sympathetic nerve blocks in herpes zoster and postherpetic neuralgia. Pain 2000: 87: 121–129.PubMedGoogle Scholar
  117. 117.
    Doi K, Nikai T, Sakura S, Saito Y. Intercostal nerve block with 5% tetracaine for chronic pain syndromes. J Clin Anesth 2002; 14: 39–41.PubMedGoogle Scholar
  118. 118.
    Kim YH, Lee CJ, Lee SC, et al. Effect of pulsed radiofrequency for postherpetic neuralgia. Acta Anaesthesiol Scand 2008;52: 1140–1143.PubMedGoogle Scholar
  119. 119.
    Kotani N, Kushikata T, Hashimoto H, et al. Intrathecal methyl-prednisolone for intractable postherpetic neuralgia. N Engl J Med 2000;343: 1514–1519.PubMedGoogle Scholar
  120. 120.
    Harke H, Gretenkort P, Ladleif HU, Koester P, Rahman S. Spinal cord stimulation in postherpetic neuralgia and in acute heipes zoster pain. Anesth Analg 2002;94: 694–700.PubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Ada Delaney
    • 1
  • Lesley A. Colvin
    • 2
  • Marie T. Fallon
    • 3
  • Robert G. Dalziel
    • 4
  • Rory Mitchell
    • 5
  • Susan M. Fleetwood-Walker
    • 1
  1. 1.Centre for NeuroregenerationUniversity of EdinburghUK
  2. 2.Department of Anaesthesia, Critical Care, and Pain MedicineUniversity of EdinburghEdinburghUK
  3. 3.Edinburgh Cancer Research Centre, Western General HospitalUniversity of EdinburghEdinburghUK
  4. 4.The Roslin Institute and Centre for Infectious DiseasesUniversity of EdinburghEdinburghUK
  5. 5.Centre for Integrative Physiology, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK

Personalised recommendations