, Volume 6, Issue 4, pp 638–647 | Cite as

Diabetic painful and insensate neuropathy: Pathogenesis and potential treatments

  • Irina G. ObrosovaEmail author
Preclinical Models of Neuropathic Pain


Advanced peripheral diabetic neuropathy (PDN) is associated with elevated vibration and thermal perception thresholds that progress to sensory loss and degeneration of all fiber types in peripheral nerve. A considerable proportion of diabetic patients also describe abnormal sensations such as paresthesias, allodynia, hyperalgesia, and spontaneous pain. One or several manifestations of abnormal sensation and pain are described in all the diabetic rat and mouse models studied so far (i.e., streptozotocin-diabetic rats and mice, type 1 insulinopenic BB/Wor and type 2 hyperinsulinemic diabetic BBZDR/Wor rats, Zucker diabetic fatty rats, and nonobese diabetic, Akita, leptin- and leptin-receptor-deficient, and high-fat diet—fed mice). Such manifestations are 1) thermal hyperalgesia, an equivalent of a clinical phenomenon described in early PDN; 2) thermal hypoalgesia, typically present in advanced PDN; 3) mechanical hyperalgesia, an equivalent of pain on pressure in early PDN; 4) mechanical hypoalgesia, an equivalent to the loss of sensitivity to mechanical noxious stimuli in advanced PDN; 5) tactile allodynia, a painful perception of a light touch; and 5) formalin-induced hyperalgesia. Rats with short-term diabetes develop painful neuropathy, whereas those with longer-term diabetes and diabetic mice typically display manifestations of both painful and insensate neuropathy, or insensate neuropathy only. Animal studies using pharmacological and genetic approaches revealed important roles of increased aldose reductase, protein kinase C, and poly(ADP-ribose) polymerase activities, advanced glycation end-products and their receptors, oxidative-nitrosative stress, growth factor imbalances, and C-peptide deficiency in both painful and insensate neuropathy. This review describes recent achievements in studying the pathogenesis of diabetic neuropathic pain and sensory disorders in diabetic animal models and developing potential pathogenetic treatments.

Key Words

Animal models diabetic insensate neuropathy diabetic painful neuropathy formalin-induced hyperalgesia mechanical hyper- and hypoalgesia pathogenetic treatments of diabetic neuropathic pain and sensory loss symptomatic treatments of diabetic pain tactile allodynia thermal hyper- and hypoalgesia 


  1. 1.
    Diabetes in America. 2nd ed. NIH Publication 95-1468. Washington, DC: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 1995.Google Scholar
  2. 2.
    Boulton AJ. The diabetic foot: from art to science. The 18th Camillo Golgi lecture. Diabetologia 2004;47: 1343–1353.PubMedCrossRefGoogle Scholar
  3. 3.
    Calcutt NA. Potential mechanisms of neuropathic pain in diabetes. Int Rev Neurobiol 2002;50: 205–208.PubMedCrossRefGoogle Scholar
  4. 4.
    Veves A, Backonja M, Malik RA. Painful diabetic neuropathy: epidemiology, natural history, early diagnosis, and treatment options. Pain Med 2008;9: 660–674.PubMedCrossRefGoogle Scholar
  5. 5.
    Vinik AI. Advances in diabetes for the millennium: new treatments for diabetic neuropathies. MedGenMed 2004;6(3 Suppl): 12.PubMedGoogle Scholar
  6. 6.
    Tesfaye S. Advances in the management of diabetic peripheral neuropathy. Curr Opin Support Palliat Care 2009;3: 136–143.PubMedCrossRefGoogle Scholar
  7. 7.
    Quattrini C, Harris ND, Malik RA, Tesfaye S. Impaired skin microvascular reactivity in painful diabetic neuropathy. Diabetes Care 2007;30: 655–659.PubMedCrossRefGoogle Scholar
  8. 8.
    Eaton SE, Harris ND, Ibrahim S, et al. Increased sural nerve epineurial blood flow in human subjects with painful diabetic neuropathy. Diabetologia 2003;46: 934–939.PubMedCrossRefGoogle Scholar
  9. 9.
    Selvarajah D, Wilkinson ID, Emery CJ, et al. Thalamic neuronal dysfunction and chronic sensorimotor distal symmetrical polyneuropathy in patients with type 1 diabetes mellitus. Diabetologia 2008;51: 2088–2092.PubMedCrossRefGoogle Scholar
  10. 10.
    Vinik AI, Suwanwalaikorn S, Stansberry KB, Holland MT, McNitt PM, Colen LE. Quantitative measurement of cutaneous perception in diabetic neuropathy. Muscle Nerve 1995;18: 574–584.PubMedCrossRefGoogle Scholar
  11. 11.
    Ziegler D, Siekierka-Kleiser E, Meyer B, Schweers M. Validation of a novel screening device (NeuroQuick) for quantitative assessment of small nerve fiber dysfunction as an early feature of diabetic polyneuropathy. Diabetes Care 2005;28: 1169–1174.PubMedCrossRefGoogle Scholar
  12. 12.
    Ilnytska O, Lyzogubov VV, Stevens MJ, et al. Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes 2006;55: 1686–1694.PubMedCrossRefGoogle Scholar
  13. 13.
    Drel VR, Pacher P, Vareniuk I, et al. Evaluation of the peroxynitrite decomposition catalyst Fe(III) tetra-mesitylporphyrin octasulfonate on peripheral neuropathy in a mouse model of type 1 diabetes. Int J Mol Med 2007;20: 783–792.PubMedGoogle Scholar
  14. 14.
    Vareniuk I, Pavlov IA, Obrosova IG. Inducible nitric oxide synthase gene deficiency counteracts multiple manifestations of peripheral neuropathy in a streptozotocin-induced mouse model of diabetes. Diabetologia 2008;51: 2126–2133.PubMedCrossRefGoogle Scholar
  15. 15.
    Gabra BH, Benrezzak O, Pheng LH, et al. Inhibition of type 1 diabetic hyperalgesia in streptozotocin-induced Wistar versus spontaneous gene-prone BB/Worchester rats: efficacy of a selective bradykinin B1 receptor antagonist. J Neuropathol Exp Neurol 2005;64: 782–789.PubMedCrossRefGoogle Scholar
  16. 16.
    Lopes LS, Pereira SS, Silva LL, et al. Antinociceptive effect of topiramate in models of acute pain and diabetic neuropathy in rodents. Life Sci 2009;84: 105–110.PubMedCrossRefGoogle Scholar
  17. 17.
    Dyck PJ, Dyck PJ, Larson TS, O’Brien PC, Velosa JA; Nerve Growth Factor Study Group. Patterns of quantitative sensation testing of hypoesthesia and hyperalgesia are predictive of diabetic polyneuropathy: a study of three cohorts. Diabetes Care 2000;23: 510–517.PubMedCrossRefGoogle Scholar
  18. 18.
    Malik RA. Early detection of nerve damage and repair in diabetic neuropathy. Nat Clin Pract Neurol 2008;4: 646–647.PubMedCrossRefGoogle Scholar
  19. 19.
    Calcutt NA, Freshwater JD, Mizisin AP. Prevention of sensory disorders in diabetic Sprague—Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia 2004;47: 718–724.PubMedCrossRefGoogle Scholar
  20. 20.
    Cameron NE, Jack AM, Cotter MA. Effect of α-lipoic acid on vascular responses and nociception in diabetic rats. Free Radic Biol Med 2001;31: 125–135.PubMedCrossRefGoogle Scholar
  21. 21.
    Cameron NE, Tuck Z, McCabe L, Cotter MA. Effect of the hydroxyl radical scavenger, dimethylthiourea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes. Diabetologia 2001;44: 1161–1169.PubMedCrossRefGoogle Scholar
  22. 22.
    Li F, Drel VR, Szabó C, Stevens MJ, Obrosova IG. Low-dose poly(ADP-ribose) polymerase inhibitor-containing combination therapies reverse early peripheral diabetic neuropathy. Diabetes 2005;54: 1514–1522.PubMedCrossRefGoogle Scholar
  23. 23.
    Stevens MJ, Zhang W, Li F, Sima AA. C-peptide corrects endoneurial blood flow but not oxidative stress in type 1 BB/Wor rats. Am J Physiol Endocrinol Metab 2004;287: E497-E505.PubMedCrossRefGoogle Scholar
  24. 24.
    Kamiya H, Murakawa Y, Zhang W, Sima AA. Unmyelinated fiber sensory neuropathy differs in type 1 and type 2 diabetes. Diabetes Metab Res Rev 2005;21: 448–458.PubMedCrossRefGoogle Scholar
  25. 25.
    Cameron NE, Gibson TM, Nangle MR, Cotter MA. Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann N Y Acad Sci 2005;1043: 784–792.PubMedCrossRefGoogle Scholar
  26. 26.
    Cotter MA, Jack AM, Cameron NE. Effects of the protein kinase Cb inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 2002;103: 311–321.Google Scholar
  27. 27.
    Kamiya H, Zhang W, Sima AA. C-peptide prevents nociceptive sensory neuropathy in type 1 diabetes. Ann Neurol 2004;56: 827–835.PubMedCrossRefGoogle Scholar
  28. 28.
    Inkster ME, Cotter MA, Cameron NE. Treatment with the xanthine oxidase inhibitor, allopurinol, improves nerve and vascular function in diabetic rats. Eur J Pharmacol 2007;561: 63–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Li F, Obrosova IG, Abatan O, et al. Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats. Am J Physiol Endocrinol Metab 2005; 288: E29-E36.PubMedCrossRefGoogle Scholar
  30. 30.
    Stevens MJ, Li F, Drel VR, et al. Nicotinamide reverses neurological and neurovascular deficits in streptozotocin diabetic rats. J Pharmacol Exp Ther 2007;320: 458–464.PubMedCrossRefGoogle Scholar
  31. 31.
    Cameron NE, Cotter MA. The neurocytokine, interleukin-6, corrects nerve dysfunction in experimental diabetes. Exp Neurol 2007;207: 23–29.PubMedCrossRefGoogle Scholar
  32. 32.
    Chattopadhyay M, Mata M, Fink DJ. Continuous δ-opioid receptor activation reduces neuronal voltage-gated sodium channel (Nav1.7) levels through activation of protein kinase C in painful diabetic neuropathy. J Neurosci 2008;28: 6652–6658.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang W, Murakawa Y, Wozniak KM, Slusher B, Sima AA. The preventive and therapeutic effects of GCPII (NAALADase) inhibition on painful and sensory diabetic neuropathy. J Neurol Sci 2006;247: 217–223.PubMedCrossRefGoogle Scholar
  34. 34.
    Li F, Abatan OI, Kim H, et al. Taurine reverses neurological and neurovascular deficits in Zucker diabetic fatty rats. Neurobiol Dis 2006;22: 669–676.PubMedCrossRefGoogle Scholar
  35. 35.
    Obrosova IG, Van Huysen C, Fathallah L, Cao XC, Greene DA, Stevens MJ. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J 2002;16: 123–125.PubMedGoogle Scholar
  36. 36.
    Li F, Szabó C, Pacher P, et al. Evaluation of orally active poly(ADP-ribose) polymerase inhibitor in streptozotocin-diabetic rat model of early peripheral neuropathy. Diabetologia 2004;47: 710–717.PubMedCrossRefGoogle Scholar
  37. 37.
    Hall KE, Sima AA, Wiley JW. Voltage-dependent calcium currents are enhanced in dorsal root ganglion neurones from the Bio Bred/Worchester diabetic rat. J Physiol 1995;486: 313–322.PubMedGoogle Scholar
  38. 38.
    Price SA, Agthong S, Middlemas AB, Tomlinson DR. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes 2004;53: 1851–1856.PubMedCrossRefGoogle Scholar
  39. 39.
    Jagtap P, Szabó C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drag Discov 2005;4: 421–440.CrossRefGoogle Scholar
  40. 40.
    Lipton SA. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drag Targets 2007;8: 621–632.CrossRefGoogle Scholar
  41. 41.
    Yamamoto T, Takahara A. Recent updates of N-type calcium channel blockers with therapeutic potential for neuropathic pain and stroke. Curr Top Med Chem 2009;9: 377–395.PubMedGoogle Scholar
  42. 42.
    Gaultier A, Arandjelovic S, Li X, et al. A shed form of LDL receptor-related protein-1 regulates peripheral nerve injury and neuropathic pain in rodents. J Clin Invest 2008;118: 161–172.PubMedCrossRefGoogle Scholar
  43. 43.
    Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 2004;361: 184–187.PubMedCrossRefGoogle Scholar
  44. 44.
    Obrosova IG, Xu W, Lyzogubov VV, et al. PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radic Biol Med 2008;44: 972–981.PubMedCrossRefGoogle Scholar
  45. 45.
    Bierhaus A, Haslbeck KM, Humpert PM, et al. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 2004;114: 1741–1751.PubMedGoogle Scholar
  46. 46.
    Drel VR, Pacher P, Vareniuk I, et al. A peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocindiabetic mice. Eur J Pharmacol 2007;569: 48–58.PubMedCrossRefGoogle Scholar
  47. 47.
    Vareniuk I, Pacher P, Pavlov IA, Drel VR, Obrosova IG. Peripheral neuropathy in mice with neuronal nitric oxide synthase gene, deficiency. Int J Mol Med 2009: 23: 571–580.PubMedGoogle Scholar
  48. 48.
    Toth C, Roug LL, Yang C, et al. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes 2008;57: 1002–1017.PubMedCrossRefGoogle Scholar
  49. 49.
    Beiswenger KK, Calcutt NA, Mizisin AP. Dissociation of thermal hypoalgesia and epidermal denervation in streptozotocin-diabetic mice. Neurosci Lett 2008;442: 267–272.PubMedCrossRefGoogle Scholar
  50. 50.
    Chattopadhyay M, Mata M, Goss J, et al. Prolonged preservation of nerve function in diabetic neuropathy in mice by herpes simplex virus-mediated gene transfer. Diabetologia 2007;50: 1550–1558.PubMedCrossRefGoogle Scholar
  51. 51.
    Francis G, Martinez J, Liu W, et al. Intranasal insulin ameliorates experimental diabetic neuropathy. Diabetes 2009: 58: 934–945.PubMedCrossRefGoogle Scholar
  52. 52.
    Obrosova IG, Mabley JG, Zsengellér Z, et al. Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB J 2005;19: 401–403.PubMedGoogle Scholar
  53. 53.
    Drel VR, Mashtalir N, Ilnytska O, et al. The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 2006;55: 3335–3343.PubMedCrossRefGoogle Scholar
  54. 54.
    Vareniuk I, Pavlov IA, Drel VR, et al. Nitrosative stress and peripheral diabetic neuropathy in leptin-deficient (ob/ob) mice. Exp Neurol 2007;205: 425–436.PubMedCrossRefGoogle Scholar
  55. 55.
    Davidson EP, Coppey LJ, Kleinschmidt TL, Oltman CL, Yorek MA. Vascular and neural dysfunctions in obese Zucker rats: effect of AVE7688. Exp Diabetes Res 2009;2009: 912327.PubMedGoogle Scholar
  56. 56.
    Obrosova IG, Ilnytska O, Lyzogubov VV, et al. High-fat diet induced neuropathy of pre-diabetes and obesity: effects of “healthy” diet and aldose reductase inhibition. Diabetes 2007;56: 2598–2608.PubMedCrossRefGoogle Scholar
  57. 57.
    Vincent AM, Russell JW, Sullivan KA, et al. SOD2 protects neurons from injury in cell culture and animal models of diabetic neuropathy. Exp Neurol 2007;208: 216–227.PubMedGoogle Scholar
  58. 58.
    Wright DE, Johnson MS, Arnett MG, Smittkamp SE, Ryals JM. Selective changes in nocifensive behavior despite normal cutaneous axon innervation in leptin receptor-null mutant (db/db) mice. J Peripher Nerv Syst 2007;12: 250–261.PubMedCrossRefGoogle Scholar
  59. 59.
    Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Yorek MA. Treatment of Zucker diabetic fatty rats with AVE7688 improves vascular and neural dysfunction. Diabetes Obes Metab 2009: 11: 223–233.PubMedCrossRefGoogle Scholar
  60. 60.
    Brussee V, Guo G, Dong Y, et al. Distal degenerative sensory neuropathy in a long-term type 2 diabetes rat model. Diabetes 2008: 57: 1664–1673.PubMedCrossRefGoogle Scholar
  61. 61.
    Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Lund DD, Yorek MA. Attenuation of vascular/neural dysfunction in Zucker rats treated with enalapril or rosuvastatin. Obesity (Silver Spring) 2008;16: 82–89.CrossRefGoogle Scholar
  62. 62.
    Obrosova IG, Vareniuk I, Stavniichuk R, Nadler JL, Drel VR. 12/15-lipoxygeuase inhibition and gene deficiency counteract peripheral diabetic neuropathy in mouse models of type 1 and type 2 diabetes. Diabetes 2009;58 Suppl 1: A220 (abstract).Google Scholar
  63. 63.
    Calcutt NA, Freshwater JD, O’Brien JS. Protection of sensory function and antihyperalgesic properties of a prosaposin-derived peptide in diabetic rats. Anesthesiology 2000;93: 1271–1278.PubMedCrossRefGoogle Scholar
  64. 64.
    Calcutt NA, Allendoerfer KL, Mizisin AP, et al. Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy. J Clin Invest 2003;111: 507–514.PubMedGoogle Scholar
  65. 65.
    Malik RA, Kallinikos P, Abbott CA, et al. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 2003;46: 683–688.PubMedGoogle Scholar
  66. 66.
    Quattrini C, Tavakoli M, Jeziorska M, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 2007; 56: 2148–2154.PubMedCrossRefGoogle Scholar
  67. 67.
    Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003;60: 108–111.PubMedGoogle Scholar
  68. 68.
    Pittenger GL, Ray M, Burcus NI, McNulty P, Basta B, Vinik AI. Intraepidermal nerve fibers are indicators of small fiber neuropathy in both diabetic and non-diabetic patients. Diabetes Care 2004;27: 1974–1979.PubMedCrossRefGoogle Scholar
  69. 69.
    Shun CT, Chang YC, Wu HP, et al. Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain 2004;127: 1593–1605.PubMedCrossRefGoogle Scholar
  70. 70.
    Johnson MS, Ryals JM, Wright DE. Early loss of peptidergic intraepidennal nerve fibers in an STZ-induced mouse model of insensate diabetic neuropathy. Pain 2008;140: 35–47.PubMedCrossRefGoogle Scholar
  71. 71.
    Kellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop-Busui R. Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes 2007;56: 2997–3005.PubMedCrossRefGoogle Scholar
  72. 72.
    Pittenger G, Mehrabyan A, Simmons K, Rice A, Barlow P, Vinik A. Small fiber neuropathy is associated with the metabolic syndrome. Metab Syndr Relat Disord 2005;3: 113–121.PubMedCrossRefGoogle Scholar
  73. 73.
    Obrosova IG, Drel VR, Vareniuk I, Stavniichuk R, Nadler JR, Schmidt RE. Different roles of 12/15-lipoxygenase in large and small fiber diabetic peripheral and autonomic neuropathies. J Peripher Nerv Syst 2009, in press (abstract).Google Scholar
  74. 74.
    Otto M, Bak S, Bach FW, Jensen TS, Sindrup SH. Pain phenomena and possible mechanisms in patients with painful polyneuropathy. Pain 2003; 101: 187–192.PubMedCrossRefGoogle Scholar
  75. 75.
    Eldor R, Raz I, Ben Yehuda A, Boulton AJ. New and experimental approaches to treatment of diabetic foot ulcers: a comprehensive review of emerging treatment strategies. Diabet Med 2004; 21: 1161–1173.PubMedCrossRefGoogle Scholar
  76. 76.
    Pradhan L, Nabzdyk C, Andersen ND, LoGerfo FW, Veves A. Inflammation and neuropeptides: the connection in diabetic wound healing. Expert Rev Mol Med 2009; 11: e2.PubMedCrossRefGoogle Scholar
  77. 77.
    Dobretsov M, Hastings SL, Romanovsky D, Stimers JR, Zhang JM. Mechanical hyperalgesia in rat models of systemic and local hyperglycemia. Brain Res 2003: 960: 174–183.PubMedCrossRefGoogle Scholar
  78. 78.
    Obrosova IG, Drel VR, Oltman CL, et al. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab 2007;293: E1645-E1655.PubMedCrossRefGoogle Scholar
  79. 79.
    Romanovsky D, Walker JC, Dobretsov M. Pressure pain precedes development of type 2 disease in Zucker rat model of diabetes. Neurosci Lett 2008;445: 220–223.PubMedCrossRefGoogle Scholar
  80. 80.
    Dobretsov M, Ghaleb AH, Romanovsky D, Pablo CS, Stimers JR. Impaired insulin signaling as a potential trigger of pain in diabetes and prediabetes. Int Anesthesiol Clin 2007;45: 95–105.PubMedCrossRefGoogle Scholar
  81. 81.
    Miki S, Yoshinaga N, Iwamoto T, Yasuda T, Sato S. Antinociceptive effect of the novel compound OT-7100 in a diabetic neuropathy model. Eur J Pharmacol 2001;430: 229–234.PubMedCrossRefGoogle Scholar
  82. 82.
    Obrosova IG, Ilnytska O, Lyzogubov VV, Mashtalir N, Yorek MA, Drel VR. Activation of Na+/H+-exchanger −1: a novel mechanism in peripheral diabetic neuropathy. In: Abstracts of the 7th International Symposium on Diabetic Neuropathy. Diabet Med 2006;23 Suppl 4 (abstract).Google Scholar
  83. 83.
    Cameron N, Cotter M, Inkster M, Nangle M. Looking to the future: diabetic neuropathy and effects of rosuvastatin on neurovascular function in diabetes models. Diabetes Res Clin Pract 2003;61 Suppl 1: S35-S39.PubMedCrossRefGoogle Scholar
  84. 84.
    Ahlgren SC, Levine JD. Protein kinase C inhibitors decrease hyperalgesia and C-fiber hyperexcitability in the streptozotocindiabetic rat. J Neurophysiol 1994;72: 684–692.PubMedGoogle Scholar
  85. 85.
    Bastyr EJ 3rd, Price KL, Bill V; the MBBQ Study Group. Development and validity testing of the neuropathy total symptom score-6: questionnaire for the study of sensory symptoms of diabetic peripheral neuropathy. Clin Ther 2005;27: 1278–1294.PubMedCrossRefGoogle Scholar
  86. 86.
    Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994;53: 55–63.PubMedCrossRefGoogle Scholar
  87. 87.
    Berti-Mattera LN, Kern TS, Siegel RE, Nemet I, Mitchell R. Sulfasalazine blocks the development of tactile allodynia in diabetic rats. Diabetes 2008;57: 2801–2808.PubMedCrossRefGoogle Scholar
  88. 88.
    Takahashi M, Kawaguchi M, Shimada K, Konishi N, Furuya H, Nakashima T. Peri-sciatic administration of indomethacin early after nerve injury can attenuate the development of tactile allodynia in a rat model of L5 single spinal nerve injury. Neurosci Lett 2004;356: 37–40.PubMedCrossRefGoogle Scholar
  89. 89.
    Suzuki R, Rahman W, Hunt SP, Dickenson AFI. Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurones following peripheral nerve injury. Brain Res 2004;1019: 68–76.PubMedCrossRefGoogle Scholar
  90. 90.
    Gustafsson H, Flood K, Berge OG, Brodin E, Olgart L, Stiller CO. Gabapentin reverses mechanical allodynia induced by sciatic nerve ischemia and formalin-induced nociception in mice. Exp Neurol 2003;182: 427–434.PubMedCrossRefGoogle Scholar
  91. 91.
    Pertovaara A, Wei H, Kalmari J, Ruotsalainen M. Pain behavior and response properties of spinal dorsal horn neurons following experimental diabetic neuropathy in the rat: modulation by nitecapone, a COMT inhibitor with antioxidant properties. Exp Neurol 2001; 167: 425–434.PubMedCrossRefGoogle Scholar
  92. 92.
    Courteix C, Privat AM, Pélissier T, Hernandez A, Eschalier A, Fialip J. Agmatine induces antihyperalgesic effects in diabetic rats and a superadditive interaction with R(−)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid, a N-methyl-d-aspartate-receptor antagonist. J Pharmacol Exp Ther 2007;322: 1237–1245.PubMedCrossRefGoogle Scholar
  93. 93.
    Arreola-Espino R, Urquiza-Marín H, Ambriz-Tututi M, et al. Melatonin reduces formalin-induced nociception and tactile allodynia in diabetic rats. Eur J Pharmacol 2007;577: 203–210.PubMedCrossRefGoogle Scholar
  94. 94.
    Sánchez-Ramírez GM, Caram-Salas NL, Rocha-González HI, et al. Benfotiamine relieves inflammatory and neuropathic pain in rats. Eur J Pharmacol 2006;530: 48–53.PubMedCrossRefGoogle Scholar
  95. 95.
    Ulugol A, Karadag HC, Ipci Y, Tamer M, Dokmeci I. The effect of WIN 55,212-2, a cannabinoid agonist, on tactile allodynia in diabetic rats. Neurosci Lett 2004;371: 167–170.PubMedCrossRefGoogle Scholar
  96. 96.
    Jolivalt CG, Mizisin LM, Nelson A, et al. B vitamins alleviate indices of neuropathic pain in diabetic rats. Eur J Pharmacol 2009;612: 41–47.PubMedCrossRefGoogle Scholar
  97. 97.
    Kimura S, Kontani H. Demonstration of antiallodynic effects of the cyclooxygenase-2 inhibitor meloxicam on established diabetic neuropathic pain in mice. J Pharmacol Sci 2009;110: 213–217.PubMedCrossRefGoogle Scholar
  98. 98.
    Johnson MS, Ryals JM, Wright DE. Diabetes-induced chemogenic hypoalgesia is paralleled by attenuated stimulus-induced fos expression in the spinal cord of diabetic mice. J Pain 2007; 8: 637–649.PubMedCrossRefGoogle Scholar
  99. 99.
    Ramos KM, Jiang Y, Svensson CI, Calcutt NA. Pathogenesis of spinally mediated hyperalgesia in diabetes. Diabetes 2007;56: 1569–1576.PubMedCrossRefGoogle Scholar
  100. 100.
    Jolivalt CG, Vu Y, Mizisin LM, Mizism AP, Calcutt NA. Impaired prosaposin secretion during nerve regeneration in diabetic rats and protection of nerve regeneration by a prosaposin-derived peptide. J Neuropathol Exp Neurol 2008;67: 702–710.PubMedCrossRefGoogle Scholar
  101. 101.
    Jolivalt CG, Lee CA, Ramos KM, Calcutt NA. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain 2008; 140: 48–57.PubMedCrossRefGoogle Scholar
  102. 102.
    Calcutt NA, Li L, Yaksh TL, Malmberg AB. Different effects of two aldose reductase inhibitors on nociception and prostaglandin E, Eur J Pharmacol 1995;285: 189–197.PubMedCrossRefGoogle Scholar
  103. 103.
    Calcutt NA, Jorge MC, Yaksh TL, Chaplan SR. Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain 1996; 68: 293–299.PubMedCrossRefGoogle Scholar
  104. 104.
    Ceseña RM, Calcutt NA. Gabapentin prevents hyperalgesia during the formalin test in diabetic rats. Neurosci Lett 1999;262: 101–104.PubMedCrossRefGoogle Scholar
  105. 105.
    Hotta N, Toyota T, Matsuoka K, et al.; SNK-860 Diabetic Neuropathy Study Group. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study [Erratum in: Diabetes Care 2002;25:413-4]. Diabetes Care 2001;24: 1776–1782.PubMedCrossRefGoogle Scholar
  106. 106.
    Hotta N, Akanuma Y, Kawamori R, et al. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: the 3-year, multicenter, comparative Al- dose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care 2006;29: 1538–1544.PubMedCrossRefGoogle Scholar
  107. 107.
    Hotta N, Yasuda K, Sumita Y, et al. Effects of a novel aldose reductase inhibitor, fidarestat (SNK-860), on vibration perception threshold and subjective symptoms in patients with diabetic polyneuropathy: an open-label pilot study. Clin Drug Investig 2004; 24: 671–680.PubMedCrossRefGoogle Scholar
  108. 108.
    Bril V, Buchanan RA. Long-term effects of ranirestat (AS-3201) on peripheral nerve function in patients with diabetic sensorimotor polyneuropathy. Diabetes Care 2006;29: 68–72.PubMedCrossRefGoogle Scholar
  109. 109.
    Kles KA, Vinik AI. Pathophysiology and treatment of diabetic peripheral neuropathy: the case for diabetic neurovascular function as an essential component. Curr Diabetes Rev 2006;2: 131–145.PubMedCrossRefGoogle Scholar
  110. 110.
    Casellini CM, Barlow PM, Rice AL, et al. A 6-mouth, randomized, double-masked, placebo-controlled study evaluating the effects of the protein kinase C-β inhibitor ruboxistaurin on skin microvascular blood flow and other measures of diabetic peripheral neuropathy. Diabetes Care 2007;30: 896–902.PubMedCrossRefGoogle Scholar
  111. 111.
    Ametov AS, Barinov A, Dyck PJ, et al.; SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with a-lipoic acid: the SYDNEY trial [Erratum in: Diabetes Care 2003;26:2227]. Diabetes Care 2003;26: 770–776.PubMedCrossRefGoogle Scholar
  112. 112.
    Ziegler D, Ametov A, Barinov A, et al. Oral treatment with α-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 2006;29: 2365–2370.PubMedCrossRefGoogle Scholar
  113. 113.
    Ekberg K, Brismar T, Johansson BL, et al. C-Peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care 2007;30: 71–76.PubMedCrossRefGoogle Scholar
  114. 114.
    Reja A, Tesfaye S, Harris ND, Ward JD. Is ACE inhibition with lisinopril helpful in diabetic neuropathy? Diabet Med 1995;12: 307–309.PubMedCrossRefGoogle Scholar
  115. 115.
    Vinik AI, Tuchman M, Safirstein B, et al. Lamotrigine for treatment of pain associated with diabetic neuropathy: results of two randomized, double-blind, placebo-controlled studies. Pain 2007; 128: 169–179.PubMedCrossRefGoogle Scholar
  116. 116.
    Donofrio PD, Raskin P, Rosenthal NR, et al.; CAPSS-141 Study Group. Safety and effectiveness of topiramate for the management of painful diabetic peripheral neuropathy in an open-label extension study. Clin Ther 2005;27: 1420–1431.PubMedCrossRefGoogle Scholar
  117. 117.
    Wymer JP, Simpson J, Sen D, Bongardt S; Lacosamide SP742 Study Group. Efficacy and safety of lacosamide in diabetic neuropathic pain: an 18-week double-blind placebo-controlled trial of fixed-dose regimens. Clin J Pain 2009;25: 376–385.PubMedCrossRefGoogle Scholar
  118. 118.
    Ropper AH, Gorson KC, Gooch CL, et al. Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: a randomized, double-Winded trial. Ann Neurol 2009;65: 386–393.PubMedCrossRefGoogle Scholar
  119. 119.
    Sang CN, Booher S, Gilron I, Parada S, Max MB. Dextromethorphan and memantine in painful diabetic neuropathy and postherpetic neuralgia: efficacy and dose-response trials. Anesthesiology 2002;96: 1053–1061.PubMedCrossRefGoogle Scholar
  120. 120.
    Somers DL, Clemente FR. The relationship between dorsal horn neurotransmitter content and allodynia in neuropathic rats treated with high-frequency transcutaneous electric nerve stimulation. Arch Phys Med Rehabil 2003;84: 1575–1583.PubMedCrossRefGoogle Scholar
  121. 121.
    Yamamoto T, Hirasawa S, Wroblewska B, et al. Antinociceptive effects of N-acetylaspartylglutamate (NAAG) peptidase inhibitors ZJ-11, ZJ-17 and ZJ-43 in the rat formalin test and in the rat neuropathic pain model. Eur J Neurosci 2004;20: 483–494.PubMedCrossRefGoogle Scholar
  122. 122.
    Obrosova IG, Van Huysen C, Fathallah L, Cao X, Stevens MJ, Greene DA. Evaluation of α1-adrenoceptor antagonist on diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J 2000;14: 1548–1558.PubMedCrossRefGoogle Scholar
  123. 123.
    Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA. Effects of Ailenedl-α-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 2000;49: 1006–1015.PubMedCrossRefGoogle Scholar
  124. 124.
    Perkins BA, Bril V. Emerging therapies for diabetic neuropathy: a clinical overview. Curr Diabetes Rev 2005;1: 271–280.PubMedCrossRefGoogle Scholar
  125. 125.
    Empl M, Renaud S, Erne B, et al. TNF-α expression in painful and nonpainful neuropathies. Neurology 2001;56: 1371–1377.PubMedGoogle Scholar
  126. 126.
    Sommer C, Lindenlaub T, Teuteberg P, Schafers M, Hartung T, Toyka KV. Anti-TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy. Brain Res 2001;913: 86–89.PubMedCrossRefGoogle Scholar
  127. 127.
    Shubayev VI, Myers RR. Endoneurial remodeling by TNFα- and TNFα-releasing proteases: a spatial and temporal co-localization study in painful neuropathy. J Peripher Nerv Syst 2002;7: 28–36.PubMedCrossRefGoogle Scholar
  128. 128.
    Skundric DS, Lisak RP. Role of neuropoietic cytokines in development and progression of diabetic polyneuropathy: from glucose metabolism to neurodegeneration. Exp Diabesity Res 2003;4: 303–312.PubMedGoogle Scholar
  129. 129.
    Satoh J, Yagihashi S, Toyota T. The possible role of tumor necrosis factor-α in diabetic polyneuropathy. Exp Diabesity Res 2003;4: 65–71.PubMedGoogle Scholar
  130. 130.
    Pettus BJ, Bielawski J, Porcelli AM, et al. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-α. FASEB J 2003;17: 1411–1421.PubMedCrossRefGoogle Scholar
  131. 131.
    Itoh A, Nishihira J, Makita H, Miyamoto K, Yamaguchi E, Nishimura M. Effects of IL-1β, TNF-α, and macrophage migration inhibitory factor on prostacyclin synthesis in rat pulmonary artery smooth muscle cells. Respirology 2003;8: 467–472.PubMedCrossRefGoogle Scholar
  132. 132.
    Svensson CI, Marsala M, Westerlund A, et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem 2003;86: 1534–1544.PubMedCrossRefGoogle Scholar
  133. 133.
    Myers RR, Sekiguchi Y, Kikuchi S, et al. Inhibition of p38 MAP kinase activity enhances axonal regeneration. Exp Neurol 2003; 184: 606–614.PubMedCrossRefGoogle Scholar
  134. 134.
    Wallace MS. Calcium and sodium channel antagonists for the treatment of pain. Clin J Pain 2000;16(2 Suppl): S80-S85.PubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Pennington Biomedical Research CenterLouisiana State University SystemBaton Rouge

Personalised recommendations