Neurotherapeutics

, Volume 6, Issue 3, pp 436–446 | Cite as

Molecular epigenetics and genetics in neuro-oncology

Review Article

Summary

Gliomas arise through genetic and epigenetic alterations of normal brain cells, although the exact cell of origin for each glioma subtype is unknown. The alteration-induced changes in gene expression and protein function allow uncontrolled cell division, tumor expansion, and infiltration into surrounding normal brain parenchyma. The genetic and epigenetic alterations are tumor subtype and tumor-grade specific. Particular alterations predict tumor aggressiveness, tumor response to therapy, and patient survival. Genetic alterations include deletion, gain, amplification, mutation, and translocation, which result in oncogene activation and tumor suppressor gene inactivation, or in some instances the alterations may simply be a consequence of tumorigenesis. Epigenetic alterations in brain tumors include CpG island hypermethylation associated with tumor suppressor gene silencing, gene-specific hypomethylation associated with aberrant gene activation, and genome-wide hypomethylation potentially leading to loss of imprinting, chromosomal instability, and cellular hyperproliferation. Other epigenetic alterations, such as changes in the position of histone variants and changes in histone modifications are also likely to be important in the molecular pathology of brain tumors. Given that histone deacetylases are targets for drugs that are already in clinical trial, surprisingly little is known about histone acetylation in primary brain tumors. Although a majority of epigenetic alterations are independent of genetic alterations, there is interaction on specific genes, signaling pathways and within chromosomal domains. Next-generation sequencing technology is now the method of choice for genomic and epigenome profiling, allowing more comprehensive understanding of genetic and epigenetic contributions to tumorigenesis in the brain.

Key Words

Genomics epigenomics gliomas methylation acetylation 

References

  1. 1.
    Clark SJ, Harrison J, Frommer M. CpNpG methylation in mammalian cells. Nat Genet 1995;10: 20–27.PubMedCrossRefGoogle Scholar
  2. 2.
    Bestor TH. Cloning of a mammalian DNA methyltransferase. Gene 1988;74: 9–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998;19: 219–220.PubMedCrossRefGoogle Scholar
  4. 4.
    Mohandas T, Sparkes RS, Shapiro LJ. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 1981;211: 393–396.PubMedCrossRefGoogle Scholar
  5. 5.
    Wolf SF, Jolly DJ, Lunnen KD, Friedmann T, Migeon BR. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc Natl Acad Sci U S A 1984;81: 2806–2810.PubMedCrossRefGoogle Scholar
  6. 6.
    Hansen RS, Gartier SM. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island. Proc Natl Acad Sci U S A 1990;87: 4174–4178.PubMedCrossRefGoogle Scholar
  7. 7.
    Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993;366: 362–365.PubMedCrossRefGoogle Scholar
  8. 8.
    Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003;300: 455.PubMedCrossRefGoogle Scholar
  9. 9.
    Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 1998;20: 116–117.PubMedCrossRefGoogle Scholar
  10. 10.
    Fouse SD, Shen Y, Pellegrini M, et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/ Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2008;2: 160–169.PubMedCrossRefGoogle Scholar
  11. 11.
    Mikkelsen TS, Hanna J, Zhang X, et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008;454: 49–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126: 663–676.PubMedCrossRefGoogle Scholar
  13. 13.
    Turner BM. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol 2005;12: 110–112.PubMedCrossRefGoogle Scholar
  14. 14.
    Tawa R, Ono T, Kurishita A, Okada S, Hirose S. Changes of DNA methylation level during pre- and postnatal periods in mice. Differentiation 1990;45: 44–48.PubMedCrossRefGoogle Scholar
  15. 15.
    Ladd-Acosta C, Pevsner J, Sabunciyan S, et al. DNA methylation signatures within the human brain. Am J Hum Genet 2007;81: 1304–1315.PubMedCrossRefGoogle Scholar
  16. 16.
    Lein ES, Hawrylycz MJ, Ao N, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 2007;445: 168–176.PubMedCrossRefGoogle Scholar
  17. 17.
    Takizawa T, Nakashima K, Namihira M, et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 2001;1: 749–758.PubMedCrossRefGoogle Scholar
  18. 18.
    Condorelli DF, Dell’Albani P, Conticello SG, et al. A neural-specific hypomethylated domain in the 5′ flanking region of the glial fibrillary acidic protein gene. Dev Neurosci 1997;19: 446–456.PubMedCrossRefGoogle Scholar
  19. 19.
    Condorelli DF, Nicoletti VG, Barresi V, et al. Tissue-specific DNA methylation patterns of the rat glial fibrillary acidic protein gene. J Neurosci Res 1994;39: 694–707.PubMedCrossRefGoogle Scholar
  20. 20.
    Goto K, Numata M, Komura JI, et al. Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation 1994;56: 39–44.PubMedGoogle Scholar
  21. 21.
    Inano K, Suetake I, Ueda T, et al. Maintenance-type DNA methyltransferase is highly expressed in post-mitotic neurons and localized in the cytoplasmic compartment. J Biochem (Tokyo) 2000;128: 315–321.Google Scholar
  22. 22.
    Trasler JM, Trasler DG, Bestor TH, Li E, Ghibu F. DNA methyltransferase in normal and Dnmtn/Dnmtn mouse embryos. Dev Dyn 1996;206: 239–247.PubMedCrossRefGoogle Scholar
  23. 23.
    Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003;302: 890–893.PubMedCrossRefGoogle Scholar
  24. 24.
    Fan G, Beard C, Chen RZ, et al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 2001;21: 788–797.PubMedGoogle Scholar
  25. 25.
    Feng J, Chang H, Li E, Fan G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 2005;79: 734–746.PubMedCrossRefGoogle Scholar
  26. 26.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99: 247–257.PubMedCrossRefGoogle Scholar
  27. 27.
    Nguyen S, Meletis K, Fu D, Jhaveri S, Jaenisch R. Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dyn 2007;236: 1663–1676.PubMedCrossRefGoogle Scholar
  28. 28.
    Ma DK, Jang MH, Guo JU, et al. Neuronal Activity-Induced Gadd45b Promotes Epigenetic DNA Demethylation and Adult Neurogenesis. Science 2009.Google Scholar
  29. 29.
    Mohn F, Weber M, Rebhan M, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 2008;30: 755–766.PubMedCrossRefGoogle Scholar
  30. 30.
    Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999;23: 185–188.PubMedCrossRefGoogle Scholar
  31. 31.
    Hansen RS, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A 1999;96: 14412–14417.PubMedCrossRefGoogle Scholar
  32. 32.
    Xu GL, Bestor TH, Bourćhis D, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999;402: 187–191.PubMedCrossRefGoogle Scholar
  33. 33.
    Tuck-Muller CM, Narayan A, Tsien F, et al. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet 2000;89: 121–128.PubMedCrossRefGoogle Scholar
  34. 34.
    Jensen LR, Amende M, Gurok U, et al. Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet 2005;76: 227–236.PubMedCrossRefGoogle Scholar
  35. 35.
    Tahiliani M, Mei P, Fang R, et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 2007;447: 601–605.PubMedCrossRefGoogle Scholar
  36. 36.
    Akbarian S. Diseases of the mind and brain: Rett’s syndrome. Am J Psychiatry 2002;159: 1103.PubMedCrossRefGoogle Scholar
  37. 37.
    Cadieux B, Ching TT, VandenBerg SR, Costello JF. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res 2006;66: 8469–8476.PubMedCrossRefGoogle Scholar
  38. 38.
    Gama-Sosa MA, Slagel VA, Trewyn RW, et al. The 5-methyl-cytosine content of DNA from human tumors. Nucleic Acids Res 1983;11: 6883–6894.PubMedCrossRefGoogle Scholar
  39. 39.
    Fanelli M, Caprodossi S, Ricci-Vitiani L, et al. Loss of pericentromeric DNA methylation pattern in human glioblastoma is associated with altered DNA methyltransferases expression and involves the stem cell compartment. Oncogene 2008;27: 358–365.PubMedCrossRefGoogle Scholar
  40. 40.
    Yu J, Zhang H, Gu J, et al. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer 2004;4: 65.PubMedCrossRefGoogle Scholar
  41. 41.
    De Smet C, De Backer O, Faraoni I, et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A 1996;93: 7149–7153.PubMedCrossRefGoogle Scholar
  42. 42.
    Van Der Bruggen P, Zhang Y, Chaux P, et al. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 2002;188: 51–64.CrossRefGoogle Scholar
  43. 43.
    Liu G, Ying H, Zeng G, et al. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 2004;64: 4980–4986.PubMedCrossRefGoogle Scholar
  44. 44.
    Debinski W, Obiri NI, Powers SK, Pastan I, Puri RK. Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and pseudomonas exotoxin. Clin Cancer Res 1995;1: 1253–1258.PubMedGoogle Scholar
  45. 45.
    Debinski W, Gibo DM. Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/ testis antigen. Mol Med 2000;6: 440–449.PubMedGoogle Scholar
  46. 46.
    Gaudet F, Hodgson JG, Eden A, et al. Induction of tumors in mice by genomic hypomethylation. Science 2003;300: 489–492.PubMedCrossRefGoogle Scholar
  47. 47.
    Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 2008;27: 404–408.PubMedCrossRefGoogle Scholar
  48. 48.
    Holm TM, Jackson-Grusby L, Brambrink T, et al. Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 2005;8: 275–285.PubMedCrossRefGoogle Scholar
  49. 49.
    McClelland M, Ivarie R. Asymmetrical distribution of CpG in an “average” mammalian gene. Nucleic Acids Res 1982;10: 7865–7877.PubMedCrossRefGoogle Scholar
  50. 50.
    Costello JF, Berger MS, Huang HS, Cavenee WK. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 1996;56: 2405–2410.PubMedGoogle Scholar
  51. 51.
    Baeza N, Weller M, Yonekawa Y, Kleihues P, Ohgaki H. PTEN methylation and expression in glioblastomas. Acta Neuropathol 2003;106: 479–485.PubMedCrossRefGoogle Scholar
  52. 52.
    Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H. Promoter hypermethylation of the RB1 gene in glioblastomas. Lab Invest 2001;81: 77–82.PubMedGoogle Scholar
  53. 53.
    Amatya VJ, Naumann U, Weller M, Ohgaki H. TP53 promoter methylation in human gliomas. Acta Neuropathol 2005;110: 178–184.PubMedCrossRefGoogle Scholar
  54. 54.
    Watanabe T, Yokoo H, Yokoo M, et al. Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 2001;60: 1181–1189.PubMedGoogle Scholar
  55. 55.
    Bello MJ, Rey JA. The p53/Mdm2/pl4ARF cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas. Cancer Genet Cytogenet 2006;164: 172–173.PubMedCrossRefGoogle Scholar
  56. 56.
    Alaminos M, Davalos V, Ropero S, et al. EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. Cancer Res 2005;65: 2565–2571.PubMedCrossRefGoogle Scholar
  57. 57.
    Bruna A, Darken RS, Rojo F, et al. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 2007;11: 147–160.PubMedCrossRefGoogle Scholar
  58. 58.
    Waha A, Guntner S, Huang TH, et al. Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas. Neoplasia 2005;7: 193–199.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhou H, Miki R, Eeva M, et al. Reciprocal regulation of SOCS 1 and SOCS3 enhances resistance to ionizing radiation in glioblastoma multiforme. Clin Cancer Res 2007;13: 2344–2353.PubMedCrossRefGoogle Scholar
  60. 60.
    Zardo G, Tiirikainen MI, Hong C, et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet 2002;32: 453–458.PubMedCrossRefGoogle Scholar
  61. 61.
    Kondo Y, Shen L, Cheng AS, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 2008;40: 741–750.PubMedCrossRefGoogle Scholar
  62. 62.
    Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 2004;4: 296–307.PubMedCrossRefGoogle Scholar
  63. 63.
    Costello JF, Futscher BW, Kroes RA, Pieper RO. Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Mol Cell Biol 1994;14: 6515–6521.PubMedGoogle Scholar
  64. 64.
    Costello JF, Futscher BW, Tano K, Graunke DM, Pieper RO. Graded methylation in the promoter and body of the O6-methyl-guanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells. J Biol Chem 1994;269: 17228–17237.PubMedGoogle Scholar
  65. 65.
    Pieper RO, Costello JF, Kroes RA, et al. Direct correlation between methylation status and expression of the human O-6-methylguanine DNA methyltransferase gene. Cancer Commun 1991;3: 241–253.PubMedGoogle Scholar
  66. 66.
    Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 1999;59: 793–797.PubMedGoogle Scholar
  67. 67.
    Esteller M, Risques RA, Toyota M, et al. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res 2001;61: 4689–4692.PubMedGoogle Scholar
  68. 68.
    Esteller M, Toyota M, Sanchez-Cespedes M, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res 2000;60: 2368–2371.PubMedGoogle Scholar
  69. 69.
    McLendon R, Friedman A, Bigner D, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008.Google Scholar
  70. 70.
    Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005;352: 997–1003.PubMedCrossRefGoogle Scholar
  71. 71.
    Everhard S, Kaloshi G, Criniere E, et al. MGMT methylation: a marker of response to temozolomide in low-grade gliomas. Ann Neurol 2006;60: 740–743.PubMedCrossRefGoogle Scholar
  72. 72.
    Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 2008;26: 2192–2197.PubMedCrossRefGoogle Scholar
  73. 73.
    Lavon I, Zrihan D, Zelikovitch B, et al. Longitudinal assessment of genetic and epigenetic markers in oligodendrogliomas. Clin Cancer Res 2007;13: 1429–1437.PubMedCrossRefGoogle Scholar
  74. 74.
    Murat A, Migliavacca E, Gorlia T, et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 2008;26: 3015–3024.PubMedCrossRefGoogle Scholar
  75. 75.
    Rand K, Qu W, Ho T, Clark SJ, Molloy P. Conversion-specific detection of DNA methylation using real-time polymerase chain reaction (ConLight-MSP) to avoid false positives. Methods 2002;27: 114–120.PubMedCrossRefGoogle Scholar
  76. 76.
    Uhlmann K, Rohde K, Zeller C, et al. Distinct methylation profiles of glioma subtypes. Int J Cancer 2003;106: 52–59.PubMedCrossRefGoogle Scholar
  77. 77.
    Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol 2007;170: 1445–1453.PubMedCrossRefGoogle Scholar
  78. 78.
    Wiencke JK, Zheng S, Jelluma N, et al. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol 2007;9: 271–279.PubMedCrossRefGoogle Scholar
  79. 79.
    Hong C, Maunakea A, Jun P, et al. Shared epigenetic mechanisms in human and mouse gliomas inactivate expression of the growth suppressor SLC5A8. Cancer Res 2005;65: 3617–3623.PubMedCrossRefGoogle Scholar
  80. 80.
    Bello MJ, Martinez-Glez V, Franco-Hernandez C, et al. DNA methylation pattern in 16 tumor-related genes in schwannomas. Cancer Genet Cytogenet 2007;172: 84–86.PubMedCrossRefGoogle Scholar
  81. 81.
    Lomas J, Bello MJ, Arjona D, et al. Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas. Genes Chromosomes Cancer 2005;42: 314–319.PubMedCrossRefGoogle Scholar
  82. 82.
    Watanabe T, Katayama Y, Yoshino A, et al. Aberrant hypermethylation of p14ARF and O6-methylguanine-DNA methyltransferase genes in astrocytoma progression. Brain Pathol 2007;17: 5–10.PubMedCrossRefGoogle Scholar
  83. 83.
    Martinez R, Setien F, Voelter C, et al. CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis 2007;28: 1264–1268.PubMedCrossRefGoogle Scholar
  84. 84.
    Tews B, Roerig P, Hartmann C, et al. Hypermethylation and transcriptional downregulation of the CITED4 gene at 1p34.2 in oligodendroglial tumours with allelic losses on lp and 19q. Oncogene 2007;26: 5010–5016.PubMedCrossRefGoogle Scholar
  85. 85.
    Reilly KM, Tuskan RG, Christy E, et al. Susceptibility to astrocytoma in mice mutant for Nf 1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proc Natl Acad Sci U S A 2004;101: 13008–13013.PubMedCrossRefGoogle Scholar
  86. 86.
    Lee J, Son MJ, Woolard K, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 2008;13: 69–80.PubMedCrossRefGoogle Scholar
  87. 87.
    Yi JM, Tsai HC, Glockner SC, et al. Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res 2008;68: 8094–8103.PubMedCrossRefGoogle Scholar
  88. 88.
    Tabu K, Sasai K, Kimura T, et al. Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res 2008;18: 1037–1046.PubMedCrossRefGoogle Scholar
  89. 89.
    Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 2000;24: 132–138.PubMedCrossRefGoogle Scholar
  90. 90.
    Nakamura M, Konishi N, Inui T, et al. Genetic variations in recurrent astrocytic tumors detected by restriction landmark genomic scanning. Brain Tumor Pathol 1998;15: 1–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Nakamura M, Konishi N, Tsunoda S, et al. Genomic alterations of human gliomas detected by restriction landmark genomic scanning. Brain Tumor Pathol 1997;14: 13–17.PubMedCrossRefGoogle Scholar
  92. 92.
    Nakamura M, Konishi N, Tsunoda S, et al. Analyses of human gliomas by restriction landmark genomic scanning. J Neurooncol 1997;35: 113–120.PubMedCrossRefGoogle Scholar
  93. 93.
    Nakamura M, Konishi N, Tsunoda S, et al. Genomic alterations in human glioma cell lines detected by restriction landmark genomic scanning. J Neurooncol 1997;34: 203–209.PubMedCrossRefGoogle Scholar
  94. 94.
    Costello JF, Plass C, Cavenee WK. Aberrant methylation of genes in low-grade astrocytomas. Brain Tumor Pathol 2000;17: 49–56.PubMedCrossRefGoogle Scholar
  95. 95.
    Meissner A, Gnirke A, Bell GW, et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 2005;33: 5868–5877.PubMedCrossRefGoogle Scholar
  96. 96.
    Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 2005;37: 853–862.PubMedCrossRefGoogle Scholar
  97. 97.
    Down TA, Rakyan VK, Turner DJ, et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 2008;26: 779–785.PubMedCrossRefGoogle Scholar
  98. 98.
    Karpf AR, Peterson PW, Rawlins JT, et al. Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells. Proc Natl Acad Sci U S A 1999;96: 14007–14012.PubMedCrossRefGoogle Scholar
  99. 99.
    Foltz G, Ryu GY, Yoon JG, et al. Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer Res 2006;66: 6665–6674.PubMedCrossRefGoogle Scholar
  100. 100.
    Kongkham PN, Northcott PA, Ra YS, et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res 2008;68: 9945–9953.PubMedCrossRefGoogle Scholar
  101. 101.
    Kim TY, Zhong S, Fields CR, Kim JH, Robertson KD. Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. Cancer Res 2006;66: 7490–7501.PubMedCrossRefGoogle Scholar
  102. 102.
    Mueller W, Nutt CL, Ehrich M, et al. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 2007;26: 583–593.PubMedCrossRefGoogle Scholar
  103. 103.
    Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006;125: 315–326.PubMedCrossRefGoogle Scholar
  104. 104.
    Ohm JE, McGarvey KM, Yu X, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007;39: 237–242.PubMedCrossRefGoogle Scholar
  105. 105.
    Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett 2003;192: 75–82.PubMedCrossRefGoogle Scholar
  106. 106.
    Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C. Cancer genetics of epigenetic genes. Hum Mol Genet 2007;16 Spec No 1: R28–49.PubMedCrossRefGoogle Scholar
  107. 107.
    Di Croce L. Chromatin modifying activity of leukemia associated fusion proteins. Hum Mol Genet 2005;14 Spec No 1: R77–84.PubMedCrossRefGoogle Scholar
  108. 108.
    Bracken AP, Pasini D, Capra M, et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 2003;22: 5323–5335.PubMedCrossRefGoogle Scholar
  109. 109.
    Hayry V, Tanner M, Blom T, et al. Copy number alterations of the polycomb gene BMI1 in gliomas. Acta Neuropathol 2008;116: 97–102.PubMedCrossRefGoogle Scholar
  110. 110.
    Tirabosco R, De Maglios G, Skrap M, Falconieri G, Pizzolitto S. Expression of the Polycomb-Group protein BMI1 and correlation with p16 in astrocytomas an immunohistochemical study on 80 cases. Pathol Res Pract 2008;204: 625–631.PubMedCrossRefGoogle Scholar
  111. 111.
    Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmil-deficient mice. Genes Dev 2005;19: 1438–1443.PubMedCrossRefGoogle Scholar
  112. 112.
    Godlewski J, Nowicki MO, Bronisz A, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 2008;68: 9125–9130.PubMedCrossRefGoogle Scholar
  113. 113.
    Bruggeman SW, Hulsman D, Tanger E, et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 2007;12: 328–341.PubMedCrossRefGoogle Scholar
  114. 114.
    Dirks P. Bmil and cell of origin determinants of brain tumor phenotype. Cancer Cell 2007;12: 295–297.PubMedCrossRefGoogle Scholar
  115. 115.
    Petrij F, Giles RH, Dauwerse HG, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 1995;376: 348–351.PubMedCrossRefGoogle Scholar
  116. 116.
    Lucio-Eterovic AK, Cortez MA, Valera ET, et al. Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer 2008;8: 243.PubMedCrossRefGoogle Scholar
  117. 117.
    Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008.Google Scholar
  118. 118.
    Saito Y, Kanai Y, Sakamoto M, et al. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc Natl Acad Sci U S A 2002;99: 10060–10065.PubMedCrossRefGoogle Scholar
  119. 119.
    Ostler KR, Davis EM, Payne SL, et al. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 2007;26: 5553–5563.PubMedCrossRefGoogle Scholar
  120. 120.
    Hong C, Moorefield KS, Jun P, et al. Epigenome scans and cancer genome sequencing converge on WNK2, a kinase-independent suppressor of cell growth. Proc Natl Acad Sci U S A 2007;104: 10974–10979.PubMedCrossRefGoogle Scholar
  121. 121.
    Moniz S, Verissimo F, Matos P, et al. Protein kinase WNK2 inhibits cell proliferation by negatively modulating the activation of MEK1/ERK1/2. Oncogene 2007;26: 6071–6081.PubMedCrossRefGoogle Scholar
  122. 122.
    Moniz S, Matos P, Jordan P. WNK2 modulates MEK1 activity through the Rho GTPase pathway. Cell Signal 2008;20: 1762–1768.PubMedCrossRefGoogle Scholar
  123. 123.
    Jun P, Hong C, Lal A, et al. Epigenetic silencing of the kinase tumor suppressor WNK2 is tumor-type and tumor-grade specific. Neuro Oncol 2008.Google Scholar
  124. 124.
    Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 2007;5: 981–989.PubMedCrossRefGoogle Scholar
  125. 125.
    Sathornsumetee S, Reardon DA, Desjardins A, et al. Molecularly targeted therapy for malignant glioma. Cancer 2007;110: 13–24.PubMedCrossRefGoogle Scholar
  126. 126.
    Yin D, Ong JM, Hu J, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res 2007;13: 1045–1052.PubMedCrossRefGoogle Scholar
  127. 127.
    Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAFl involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A 2004;101: 1241–1246.PubMedCrossRefGoogle Scholar
  128. 128.
    Qiu L, Kelso MJ, Hansen C, et al. Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate. Br J Cancer 1999;80: 1252–1258.PubMedCrossRefGoogle Scholar
  129. 129.
    Gray SG, Qian CN, Furge K, Guo X, Teh BT. Microarray profiling of the effects of histone deacetylase inhibitors on gene expression in cancer cell lines. Int J Oncol 2004;24: 773–795.PubMedGoogle Scholar
  130. 130.
    Lee JH, Park JH, Jung Y, et al. Histone deacetylase inhibitor enhances 5-fluorouracil cytotoxicity by down-regulating thymidylate synthase in human cancer cells. Mol Cancer Ther 2006;5: 3085–3095.PubMedCrossRefGoogle Scholar
  131. 131.
    Mitsiades CS, Mitsiades NS, McMullan CJ, et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A 2004;101: 540–545.PubMedCrossRefGoogle Scholar
  132. 132.
    Peart MJ, Smyth GK, van Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 2005;102: 3697–3702.PubMedCrossRefGoogle Scholar
  133. 133.
    Eyupoglu IY, Hahnen E, Buslei R, et al. Suberoylanilide hydroxamic acid (SAHA) has potent anti-glioma properties in vitro, ex vivo and in vivo. J Neurochem 2005;93: 992–999.PubMedCrossRefGoogle Scholar
  134. 134.
    Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM. Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 2005;62: 223–229.PubMedCrossRefGoogle Scholar
  135. 135.
    Chinnaiyan P, Cerna D, Burgan WE, et al. Postradiation sensitization of the histone deacetylase inhibitor valproic acid. Clin Cancer Res 2008;14: 5410–5415.PubMedCrossRefGoogle Scholar
  136. 136.
    Kumagai T, Wakimoto N, Yin D, et al. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer 2007;121: 656–665.PubMedCrossRefGoogle Scholar
  137. 137.
    Ugur HC, Ramakrishna N, Bello L, et al. Continuous intracranial administration of suberoylanilide hydroxamic acid (SAHA) inhibits tumor growth in an orthotopic glioma model. J Neurooncol 2007;83: 267–275.PubMedCrossRefGoogle Scholar
  138. 138.
    Entin-Meer M, Rephaeli A, Yang X, et al. Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas. Mol Cancer Ther 2005;4: 1952–1961.PubMedCrossRefGoogle Scholar
  139. 139.
    Entin-Meer M, Yang X, VandenBerg SR, et al. In vivo efficacy of a novel histone deacetylase inhibitor in combination with radiation for the treatment of gliomas. Neuro Oncol 2007;9: 82–88.PubMedCrossRefGoogle Scholar
  140. 140.
    Ellis L, Pan Y, Smyth GK, et al. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res 2008;14: 4500–4510.PubMedCrossRefGoogle Scholar
  141. 141.
    Gimsing P, Hansen M, Knudsen LM, et al. A phase I clinical trial of the histone deacetylase inhibitor belinostat in patients with advanced hematological neoplasia. Eur J Haematol 2008;81: 170–176.PubMedCrossRefGoogle Scholar
  142. 142.
    Esteller M, Sanchez-Cespedes M, Rosell R, et al. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 1999;59: 67–70.PubMedGoogle Scholar
  143. 143.
    Wong IH, Lo YM, Zhang J, et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res 1999;59: 71–73.PubMedGoogle Scholar
  144. 144.
    Weaver KD, Grossman SA, Herman JG. Methylated tumor-specific DNA as a plasma biomarker in patients with glioma. Cancer Invest 2006;24: 35–40.PubMedCrossRefGoogle Scholar
  145. 145.
    Lee J, Kotliarova S, Kotliarov Y, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006;9: 391–403.PubMedCrossRefGoogle Scholar
  146. 146.
    Li A, Walling J, Kotliarov Y, et al. Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res 2008;6: 21–30.PubMedCrossRefGoogle Scholar
  147. 147.
    Tan J, Yang X, Zhuang L, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007;21: 1050–1063.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2009

Authors and Affiliations

  1. 1.Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan Francisco

Personalised recommendations