Neurotherapeutics

, Volume 6, Issue 2, pp 312–318 | Cite as

Alteration of epileptogenesis genes

  • Amy R. Brooks-Kayal
  • Yogendra H. Raol
  • Shelley J. Russek
Theme 3: Gene Therapy

Summary

Retrospective studies suggest that precipitating events such as prolonged seizures, stroke, or head trauma increase the risk of developing epilepsy later in life. The process of epilepsy development, known as epileptogenesis, is associated with changes in the expression of a myriad of genes. One of the major challenges for the epilepsy research community has been to determine which of these changes contributes to epileptogenesis, which may be compensatory, and which may be noncontributory. Establishing this for any given gene is essential if it is to be considered a therapeutic target for the prevention or treatment of epilepsy. Our laboratories have examined alterations in gene expression related to inhibitory neurotransmission that have been proposed as contributing factors in epileptogenesis. The GABAA receptor mediates most fast synaptic inhibition, and changes in GABAA receptor subunit expression and function have been reported in adult animals beginning immediately after prolonged seizures (status epilepticus [SE]) and continue as animals become chronically epileptic. Prevention of GABAA receptor subunit changes after SE using viral gene transfer inhibits development of epilepsy in an animal model, suggesting that these changes directly contribute to epileptogenesis. The mechanisms that regulate differential expression of GABAA receptor subunits in hippocampus after SE have recently been identified, and include the CREB-ICER, JAK-STAT, BDNF, and Egr3 signaling pathways. Targeting signaling pathways that alter the expression of genes involved in epileptogenesis may provide novel therapeutic approaches for preventing or inhibiting the development of epilepsy after a precipitating insult.

Key Words

GABA receptor subunits epilepsy epileptogenesis hippocampus gene transfer transcriptional regulation 

References

  1. 1.
    Mehta AK, Ticku MK. An update on GABAA receptors. Brain Res Brain Res Rev 1999;29: 196–217.CrossRefPubMedGoogle Scholar
  2. 2.
    Whiting PJ. The GABA-A receptor gene family: new targets for therapeutic intervention. Neurochem Int 1999;34: 387–390.CrossRefPubMedGoogle Scholar
  3. 3.
    Vicini S. Pharmacologic significance of the structural heterogeneity of the GABAA receptor-chloride ion channel complex. Neuropsychopharmacology 1991;14: 9–15.Google Scholar
  4. 4.
    Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain: III. Embryonic and postnatal development. J Neurosci 1992;12: 4151–4172.PubMedGoogle Scholar
  5. 5.
    Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain: I. Telencephalon, diencephalon, mesencephalon. J Neurosci 1992;12: 1040–1062.PubMedGoogle Scholar
  6. 6.
    Macdonald RL, Olsen RW. GABAA receptor channels. Annu Rev Neurosci 1994;17: 569–602.PubMedGoogle Scholar
  7. 7.
    Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy [Erratum in: Nat Med 1999;5:590]. Nat Med 1998;4: 1166–1172.CrossRefPubMedGoogle Scholar
  8. 8.
    Peng Z, Huang CS, Stell BM, Mody I, Houser CR. Altered expression of the δ subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci 2004;24: 8629–8639.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang N, Wei W, Mody I, Houser CR. Altered localization of GABAA receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 2007;27: 7520–7531.CrossRefPubMedGoogle Scholar
  10. 10.
    Cohen AS, Lin DD, Quirk GL, Coulter DA. Dentate granule cell GABAA receptors in epileptic hippocampus: enhanced synaptic efficacy and altered pharmacology. Eur J Neurosci 2003;17: 1607–1616.CrossRefPubMedGoogle Scholar
  11. 11.
    Houser CR, Esclapez M. Downregulation of the α5 subunit of the GABAA receptor in the pilocarpine model of temporal lobe epilepsy. Hippocampus 2003;13: 633–645.CrossRefPubMedGoogle Scholar
  12. 12.
    Brooks-Kayal AR, Shumate MD, Jin H, et al. Human neuronal γ-aminobutyric acidA receptors: coordinated subunit mRNA expression and functional correlates in individual dentate granule cells. J Neurosci 1999;19: 8312–8318.PubMedGoogle Scholar
  13. 13.
    Zhang G, Raol YH, Hsu FC, Coulter DA, Brooks-Kayal AR. Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience 2004;125: 299–303.CrossRefPubMedGoogle Scholar
  14. 14.
    Raol YH, Lund IV, Bandyopadhyay S, et al. Enhancing GABAA receptor α1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci 2006;26: 11342–11346.CrossRefPubMedGoogle Scholar
  15. 15.
    Roberts DS, Raol YH, Bandyopadhyay S, et al. Egr3 stimulation of GABRA4 promoter activity as a mechanism for seizure-induced up-regulation of GABAA receptor α4 subunit expression. Proc Natl Acad Sci U S A 2005;102: 11894–11899.CrossRefPubMedGoogle Scholar
  16. 16.
    Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002;35: 605–623.CrossRefPubMedGoogle Scholar
  17. 17.
    Jaworski JB, Mioduszewska A, Sánchez-Capelo A, et al. Inducible cAMP early repressor, an endogenous antagonist of cAMP responsive element-binding protein, evokes neuronal apoptosis in vitro. J Neurosci 2003;23: 4519–4526.PubMedGoogle Scholar
  18. 18.
    Molina CA, Foulkes NS, Lalli E, Sassone-Corsi P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 1993; 75: 875–886.CrossRefPubMedGoogle Scholar
  19. 19.
    Steiger JL, Russek SJ. GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors [Erratum in: Pharmacol Ther 2004;103:261]. Pharmacol Ther 2004;101: 259–281.CrossRefPubMedGoogle Scholar
  20. 20.
    Fitzgerald LR, Vaidya VA, Terwilliger RZ, Duman RS. Electro-convulsive seizure increases the expression of CREM (cyclic AMP response element modulator) and ICER (inducible cyclic AMP early repressor) in rat brain. J Neurochem 1996;66: 429–432.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee B, Dziema H, Lee KH, Choi YS, Obrietan K. CRE-mediated transcription and COX-2 expression in the pilocarpine model of status epilepticus. Neurobiol Dis 2007;25: 80–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Lund IV, Hu Y, Raol YH, et al. BDNF selectively regulates GABAA receptor transcription by the activation of the JAK/STAT pathway. Science Signal 2008;1(41): ra9.CrossRefGoogle Scholar
  23. 23.
    Hu Y, Lund IV, Gravielle MC, Farb DH, Brooks-Kayal AR, Russek SJ. Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor. J Biol Chem 2008;283: 9328–9340.CrossRefPubMedGoogle Scholar
  24. 24.
    McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Science STKE 2006;(356):re12.Google Scholar
  25. 25.
    Múdo G, Jiang XH, Timmusk T, Bindoni M, Belluardo N. Change in neurotrophins and their receptor mRNAs in the rat forebrain after status epilepticus induced by pilocarpine. Epilepsia 1996;37: 198–207.CrossRefPubMedGoogle Scholar
  26. 26.
    Rudge JS, Mather PE, Pasnikowski EM, et al. Endogenous BDNF protein is increased in adult rat hippocampus after a kainic acid induced excitotoxic insult but exogenous BDNF is not neuroprotective. Exp Neurol 1998;149: 398–410.CrossRefPubMedGoogle Scholar
  27. 27.
    Binder DK, Croll SD, Gall CM, Scharfman HE. BDNF and epilepsy: too much of a good thing? Trends Neurosci 2001; 24: 47–53.CrossRefPubMedGoogle Scholar
  28. 28.
    Altar CA, Laeng P, Jurata LW, et al. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 2004;24: 2667–2677.CrossRefPubMedGoogle Scholar
  29. 29.
    Roberts DS, Hu Y, Lund IV, Brooks-Kayal AR, Russek SJ. Brain-derived neurotrophic factor (BDNF)-induced synthesis of early growth response factor 3 (Egr3) controls the levels of type A GABA receptor α4 subunits in hippocampal neurons. J Biol Chem 2006;281: 29431–29435.CrossRefPubMedGoogle Scholar
  30. 30.
    Darnell JE Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994;264: 1415–1421.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhong Z, Wen Z, Darnell J. STAT3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994;264: 95–98.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhong Z, Wen Z, Darnell JE Jr. STAT3 and STAT4: members of the family of signal transducers and activators of transcription. Proc Natl Acad Sci U S A 1994;91: 4806–4810.CrossRefPubMedGoogle Scholar
  33. 33.
    Schindler C, Darnell JE Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 1995; 64: 621–651.CrossRefPubMedGoogle Scholar
  34. 34.
    Ihle JN. STATs: signal transducers and activators of transcription. Cell 1996;84: 331–334.CrossRefPubMedGoogle Scholar
  35. 35.
    Aaronson DS, Horvath CM. A road map for those who don’t know JAK-STAT. Science 2002;296: 1653–1655.CrossRefPubMedGoogle Scholar
  36. 36.
    Dowlati A, Nethery D, Kern JA. Combined inhibition of epidermal growth factor receptor and JAK/STAT pathways results in greater growth inhibition in vitro than single agent therapy. Mol Cancer Ther 2004;3: 459–463.PubMedGoogle Scholar
  37. 37.
    Burdelya L, Catlett-Falcone R, Levitzki A, et al. Combination therapy with AG-490 and interleukin 12 achieves greater antitumor effects than either agent alone. Mol Cancer Ther 2002; 1: 893–899.PubMedGoogle Scholar
  38. 38.
    Amit-Vazina M, Shishodia S, Harris D, et al. Atiprimod blocks STAT3 phosphorylation and induces apoptosis in multiple myeloma cells. Br J Cancer 2005;93: 70–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Faderl S, Ferrajoli A, Harris D, Van Q, Kantarjian HM, Estrov Z. Atiprimod blocks phosphorylation of JAK-STAT and inhibits proliferation of acute myeloid leukemia (AML) cells. Leuk Res 2007; 31: 91–95.CrossRefPubMedGoogle Scholar
  40. 40.
    White G, Gurley D. Alpha subunits influence Zn block of γ2 containing GABAA receptor currents. Neuroreport 1995;6: 461–464.CrossRefPubMedGoogle Scholar
  41. 41.
    Jones-Davis DM, Macdonald RL. GABAA receptor function and pharmacology in epilepsy and status epilepticus. Curr Opin Pharmacol 2003;3: 12–18.CrossRefPubMedGoogle Scholar
  42. 42.
    Lagrange AH, Botzolakis EJ, Macdonald RL. Enhanced macroscopic desensitization shapes the response of α4 subtype-containing GABAA receptors to synaptic and extrasynaptic GABA. J Physiol 2007;578: 655–676.CrossRefPubMedGoogle Scholar
  43. 43.
    O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 1999;22: 167–173.CrossRefPubMedGoogle Scholar
  44. 44.
    Mazarati A, Liu H, Soomets U, et al. Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci 1998;18: 10070–10077.PubMedGoogle Scholar
  45. 45.
    Mazarati AM, Hohmann JG, Bacon A, et al. Modulation of hippocampal excitability and seizures by galanin. J Neurosci 2000; 20: 6276–6281.PubMedGoogle Scholar
  46. 46.
    Haberman RP, Samulski RJ, McCown TJ. Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat Med 2003;9: 1076–1080.CrossRefPubMedGoogle Scholar
  47. 47.
    Kanter-Schlifke I, Toft Sørensen A, Ledri M, Kuteeva E, Hökfelt T, Kokaia M. Galanin gene transfer curtails generalized seizures in kindled rats without altering hippocampal synaptic plasticity. Neuroscience 2007;150: 984–992.CrossRefPubMedGoogle Scholar
  48. 48.
    Sollenberg U, Bartfai T, Langel U. Galnon: a low-molecular weight ligand of the galanin receptors. Neuropeptides 2005;39: 161–163.CrossRefPubMedGoogle Scholar
  49. 49.
    Saar K, Mazarati AM, Mahlapuu R, et al. Anticonvulsant activity of a nonpeptide galanin receptor agonist. Proc Natl Acad Sci U S A 2002;99: 7136–7141.CrossRefPubMedGoogle Scholar
  50. 50.
    Nadler JV, Tu B, Timofeeva O, Jiao Y, Herzog H. Neuropeptide Y in the recurrent mossy fiber pathway. Peptides 2007;28: 357–364.CrossRefPubMedGoogle Scholar
  51. 51.
    Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 1996;381: 415–421.CrossRefPubMedGoogle Scholar
  52. 52.
    Noé F, Pool AH, Nissinen J, et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 2008;131: 1506–1515.CrossRefPubMedGoogle Scholar
  53. 53.
    Young D, Dragunow M. Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms. Neuroscience 1994;58: 245–261.CrossRefPubMedGoogle Scholar
  54. 54.
    Rebola N, Porciúncula LO, Lopes LV, Oliveira CR, Soares-da-Silva P, Cunha RA. Long-term effect of convulsive behavior on the density of adenosine A1 and A2A receptors in the rat cerebral cortex. Epilepsia 2005;46 Suppl 5: 159–165.CrossRefPubMedGoogle Scholar
  55. 55.
    Güttinger M, Padrun V, Pralong WF, Boison D. Seizure suppression and lack of adenosine A1 receptor desensitization after focal long-term delivery of adenosine by encapsulated myoblasts. Exp Neurol 2005;193: 53–64.CrossRefPubMedGoogle Scholar
  56. 56.
    Ren G, Li T, Lan JQ, Wilz A, Simon RP, Boison D. Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: a novel perspective for seizure control. Exp Neurol 2007;208: 26–37.CrossRefPubMedGoogle Scholar
  57. 57.
    Wilz A, Pritchard EM, Li T, Lan JQ, Kaplan DL, Boison D. Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials 2008;29: 3609–3616.CrossRefPubMedGoogle Scholar
  58. 58.
    Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol 2008;86: 186–215.CrossRefPubMedGoogle Scholar
  59. 59.
    Mikuni N, Babb TL, Chakravarty DN, Christi W. Time course of transient expression of GDNF protein in rat granule cells of the bilateral dentate gyri after unilateral intrahippocampal kainic acid injection. Neurosci Lett 1999;262: 215–218.CrossRefPubMedGoogle Scholar
  60. 60.
    Martin D, Miller G, Rosendahl M, Russell DA. Potent inhibitory effects of glial derived neurotrophic factor against kainic acid mediated seizures in the rat. Brain Res 1995;683: 172–178.CrossRefPubMedGoogle Scholar
  61. 61.
    Li S, Xu B, Martin D, Racine RJ, Fahnestock M. Glial cell line-derived neurotrophic factor modulates kindling and activation-induced sprouting in hippocampus of adult rats. Exp Neurol 2002; 178: 49–58.CrossRefPubMedGoogle Scholar
  62. 62.
    Kanter-Schlifke I, Georgievska B, Kirik D, Kokaia M. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Mol Ther 2007;15: 1106–1113.PubMedGoogle Scholar
  63. 63.
    Kojima N, Borlikova G, Sakamoto T, et al. Inducible cAMP early repressor acts as a negative regulator for kindling epileptogenesis and long-term fear memory. J Neurosci 2008;28: 6459–6472.CrossRefPubMedGoogle Scholar
  64. 64.
    Porter BE, Lund IV, Varodayan FP, Wallace RW, Blendy JA. The role of transcription factors cyclic-AMP responsive element modulator (CREM) and inducible cyclic-AMP early repressor (ICER) in epileptogenesis. Neuroscience 2008;152: 829–836.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2009

Authors and Affiliations

  • Amy R. Brooks-Kayal
    • 1
    • 2
  • Yogendra H. Raol
    • 1
  • Shelley J. Russek
    • 3
  1. 1.Department of Pediatrics, Division of NeurologyUniversity of Colorado DenverAurora
  2. 2.The Children’s HospitalAurora
  3. 3.Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBoston

Personalised recommendations