Neurotherapeutics

, Volume 6, Issue 2, pp 258–262

Commentary: Physical approaches for the treatment of epilepsy: Electrical and magnetic stimulation and cooling

  • Wolfgang Löscher
  • Andrew J. Cole
  • Michael J. McLean
Theme 1: Brain Stimulation and Cooling

Summary

Physical approaches for the treatment of epilepsy currently under study or development include electrical or magnetic brain stimulators and cooling devices, each of which may be implanted or applied externally. Some devices may stimulate peripheral structures, whereas others may be implanted directly into the brain. Stimulation may be delivered chronically, intermittently, or in response to either manual activation or computer-based detection of events of interest. Physical approaches may therefore ultimately be appropriate for seizure prophylaxis by causing a modification of the underlying substrate, presumably with a reduction in the intrinsic excitability of cerebral structures, or for seizure termination, by interfering with the spontaneous discharge of pathological neuronal networks. Clinical trials of device-based therapies are difficult due to ethical issues surrounding device implantation, problems with blinding, potential carryover effects that may occur in crossover designs if substrate modification occurs, and subject heterogeneity. Unresolved issues in the development of physical treatments include optimization of stimulation parameters, identification of the optimal volume of brain to be stimulated, development of adequate power supplies to stimulate the necessary areas, and a determination that stimulation itself does not promote epileptogenesis or adverse long-term effects on normal brain function.

Key Words

Brain stimulation vagus nerve hypothermia neuromodulation seizures 

References

  1. 1.
    Theodore WH, Fisher RS. Brain stimulation for epilepsy. Lancet Neurol 2004;3: 111–118.CrossRefPubMedGoogle Scholar
  2. 2.
    Theodore WH, Fisher R. Brain stimulation for epilepsy. Acta Neurochir Suppl 2007;97: 261–272.CrossRefPubMedGoogle Scholar
  3. 3.
    Groves DA, Brown VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 2005;29: 493–500.CrossRefPubMedGoogle Scholar
  4. 4.
    Boon P, De H V, Vonck K, Van Roost D. Clinical experience with vagus nerve stimulation and deep brain stimulation in epilepsy. Acta Neurochir Suppl 2007;97: 273–280.CrossRefPubMedGoogle Scholar
  5. 5.
    Milby AH, Halpem CH, Baituch GH. Vagus nerve stimulation for epilepsy and depression. Neurotherapeutics 2008;5: 75–85.CrossRefPubMedGoogle Scholar
  6. 6.
    Kanner AM. Depression in epilepsy: a complex relation with unexpected consequences. Curr Opin Neurol 2008;21: 190–194.CrossRefPubMedGoogle Scholar
  7. 7.
    Miller JM, Kustra RP, Vuong A, Hammer AE, Messenheimer JA. Depressive symptoms in epilepsy: prevalence, impact, aetiology, biological correlates and effect of treatment with antiepileptic drugs. Drugs 2008;68: 1493–1509.CrossRefPubMedGoogle Scholar
  8. 8.
    Brodtkorb E, Mula M. Optimizing therapy of seizures in adult patients with psychiatric comorbidity. Neurology 2006;67(suppl 4): S39-S44.PubMedGoogle Scholar
  9. 9.
    Helmers SL, Griesemer DA, Dean CJ, et al. Observations on the use of vagus nerve stimulation earlier in the course of pharmacoresistant epilepsy: patients with seizures for six years or less. The Neurologist 2003;9: 160–164.CrossRefPubMedGoogle Scholar
  10. 10.
    Breit S, Schulz JB, Benabid AL. Deep brain stimulation. Cell Tissue Res 2004;318: 275–288.CrossRefPubMedGoogle Scholar
  11. 11.
    Vonck K, Boon P, Van Roost D. Anatomical and physiological basis and mechanism of action of neurostimulation for epilepsy. Acta Neurochir Suppl 2007;97: 321–328.CrossRefPubMedGoogle Scholar
  12. 12.
    Halpern CH, Samadani U, Litt B, Jaggi JL, Baituch GH. Deep brain stimulation for epilepsy. Neurotherapeutics 2008;5: 59–67.CrossRefPubMedGoogle Scholar
  13. 13.
    Li Y, Mogul DJ. Electrical control of epileptic seizures. J Clin Neurophysiol 2007;24: 197–204.CrossRefPubMedGoogle Scholar
  14. 14.
    Morrell M. Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures? Curr Opin Neurol 2006; 19: 164–168.CrossRefPubMedGoogle Scholar
  15. 15.
    Sun FT, Morrell MJ, Wharen Jr. RE. Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics 2008;5: 68–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Rothman SM, Smyth MD, Yang XF, Peterson GP. Focal cooling for epilepsy: an alternative therapy that might actually work. Epilepsy Behav 2005;7: 214–221.CrossRefPubMedGoogle Scholar
  17. 17.
    Paulus W. Transcranial direct current stimulation (tDCS). Suppl Clin Neurophysiol 2003;56: 249–254.CrossRefPubMedGoogle Scholar
  18. 18.
    Been G, Ngo TT, Miller SM, Fitzgerald PB. The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain Res Rev 2007;56: 346–361.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen R, Cros D, Curra A, Di L V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008; 119: 504–532.CrossRefPubMedGoogle Scholar
  20. 20.
    Theodore WH, Hunter K, Chen R, Vega-Bermudez F, Boroojerdi B, Reeves-Tyer P, et al. Transcranial magnetic stimulation for the treatment of seizures: a controlled study. Neurology 2002;59: 560–562.PubMedGoogle Scholar
  21. 21.
    Cantello R, Rossi S, Varrase C, et al. Slow repetitive TMS for drug-resistant epilepsy: clinical and EEG findings of a placebo-controlled trial. Epilepsia 2007;48: 366–374.CrossRefPubMedGoogle Scholar
  22. 22.
    Ebert U, Ziemann U. Altered seizure susceptibility after high-frequency transcranial magnetic stimulation in rats. Neurosci Lett 1999;273: 155–158.CrossRefPubMedGoogle Scholar
  23. 23.
    Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia 2006; 47: 335–342.CrossRefPubMedGoogle Scholar
  24. 24.
    Liebetanz D, Klinker F, Hering D, et al. Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 2006;47: 1216–1224.CrossRefPubMedGoogle Scholar
  25. 25.
    Gunn AJ, Gunn TR. The ‘pharmacology’ of neuronal rescue with cerebral hypothermia. Early Human Development 1998;53: 19–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet 2008;371: 1955–1969.CrossRefPubMedGoogle Scholar
  27. 27.
    Hemmen TM, Lyden PD. Induced hypothermia for acute stroke. Stroke 2007;38(Suppl 2): 794–799.CrossRefPubMedGoogle Scholar
  28. 28.
    Vastola EF, Homan R, Rosen A. Inhibition of focal seizures by moderate hypothermia. A clinical and experimental study. Arch Neurol 1969;20: 430–439.PubMedGoogle Scholar
  29. 29.
    Schmitt FC, Buchheim K, Meierkord H, Holtkamp M. Anticonvulsant properties of hypothermia in experimental status epilepticus. Neurobiol Dis 2006;23: 689–696.CrossRefPubMedGoogle Scholar
  30. 30.
    Sartorius CJ, Berger MS. Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer’s lactate to the cortex. Technical note. J Neurosurg 1998;88: 349–351.CrossRefPubMedGoogle Scholar
  31. 31.
    Karkar KM, Garcia PA, Bateman LM, Smyth MD, Barbaro NM, Berger M. Focal cooling suppresses spontaneous epileptiform activity without changing the cortical motor threshold. Epilepsia 2002;43: 932–935.CrossRefPubMedGoogle Scholar
  32. 32.
    Gluckman PD, Wyatt JS, Azzopardi D, et al. On behalf of the CoolCap Study Group. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomized trial. Lancet 2005;365: 663–670.PubMedGoogle Scholar
  33. 33.
    Burton JM, Peebles GA, Binder DK, Rothman SM, Smyth MD. Transcortical cooling inhibits hippocampal-kindled seizures in the rat. Epilepsia 2005;46: 1881–1887.CrossRefPubMedGoogle Scholar
  34. 34.
    Yang XF, Kennedy BR, Lomber SG, Schmidt RE, Rothman SM. Cooling produces minimal neuropathology in neocortex and hippocampus. Neurobiol Dis 2006;23: 637–643.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2009

Authors and Affiliations

  • Wolfgang Löscher
    • 1
    • 2
  • Andrew J. Cole
    • 3
  • Michael J. McLean
    • 4
  1. 1.Department of Pharmacology, Toxicology and PharmacyUniversity of Veterinary MedicineHannoverGermany
  2. 2.Center for Systems NeuroscienceHannoverGermany
  3. 3.Epilepsy ServiceMassachusetts General HospitalBoston
  4. 4.Department of NeurologyVanderbilt University Medical CenterNashville

Personalised recommendations