, Volume 6, Issue 2, pp 244–250 | Cite as

Noninvasive brain stimulation protocols in the treatment of epilepsy: Current state and perspectives

  • Michael A. Nitsche
  • Walter Paulus
Theme 1: Brain Stimulation and Cooling


In epileptic seizures, there is an enhanced probability of neuronal networks to fire synchronously at high frequency, initiated by a paroxysmal depolarisation shift. Reducing neuronal excitability is a common target of antiepileptic therapies. Beyond or in addition to pharmacological interventions, excitability-reducing brain stimulation is pursued as an alternative therapeutic approach. Hereby, noninvasive brain stimulation tools, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have gained increased interest as efficient tools to modulate cortical excitability and activity. In animal models, stimulation-induced cortical excitability diminution has been shown to be suited to reduce seizures. Clinical studies conducted to date, however, have shown mixed results. Reasons for this, as well as possible optimization strategies that might lead to more efficient future stimulation protocols, will be discussed.

Key Words

Epilepsy brain stimulation TMS tDCS humans 


  1. 1.
    Stafstrom CE. Epilepsy: a review of selected clinical syndromes and advances in basic science. J Cereb Blood Flow Metab 2006; 26: 983–1004.CrossRefPubMedGoogle Scholar
  2. 2.
    Steriade M, Contreras D. Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. J Neurophysiol 1998;80: 1439–1455.PubMedGoogle Scholar
  3. 3.
    Dudek FE, Sutula TP. Epileptogenesis in the dentate gyrus: a critical perspective. Prog Brain Res 2007;163: 755–773.CrossRefPubMedGoogle Scholar
  4. 4.
    Levy RH, Mattson RH, Meldrum BS, Perucca E, eds. Antiepileptic Drugs, 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2002.Google Scholar
  5. 5.
    Schramm J, Clusmann H. The surgery of epilepsy. Neurosurgery 2008;62(Suppl 2): 463–481.PubMedGoogle Scholar
  6. 6.
    Schiller Y, Najjar Y. Quantifying the response to antiepileptic drugs: effect of past treatment history. Neurology 2008;70: 54–65.CrossRefPubMedGoogle Scholar
  7. 7.
    Spencer S, Huh L. Outcomes of epilepsy surgery in adults and children. Lancet Neurol 2008;7: 525–537.CrossRefPubMedGoogle Scholar
  8. 8.
    Barker AT, Jalinous R, Freeston IL. Noninvasive magnetic stimulation of human motor cortex. Lancet 1985;1: 1106–1107.CrossRefPubMedGoogle Scholar
  9. 9.
    Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004;44: 5–21.CrossRefPubMedGoogle Scholar
  10. 10.
    Massey PV, Bashir ZI. Long-term depression: multiple forms and implications for brain function. Trends Neurosci 2007;30: 176–184.CrossRefPubMedGoogle Scholar
  11. 11.
    Raymond CR. LTP forms 1, 2 and 3: different mechanisms for the “long” in long-term potentiation. Trends Neurosci 2007;30: 167–175.CrossRefPubMedGoogle Scholar
  12. 12.
    Fitzgerald PB, Brown TL, Marston NA, et al. Motor cortical excitability and clinical response to rTMS in depression. J Affect Disord 2004;82: 71–76.CrossRefPubMedGoogle Scholar
  13. 13.
    Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Cañete C, Catalá MD. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 1998;15: 333–343.CrossRefPubMedGoogle Scholar
  14. 14.
    Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005;45: 201–206.CrossRefPubMedGoogle Scholar
  15. 15.
    Albensi BC, Ata G, Schmidt E, Waterman JD, Janigro D. Activation of long-term synaptic plasticity causes suppression of epileptiform activity in rat hippocampal slices. Brain Res 2004;998: 56–64.CrossRefPubMedGoogle Scholar
  16. 16.
    Schiller Y, Bankirer Y. Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. J Neurophysiol 2007;97: 1887–1902.CrossRefPubMedGoogle Scholar
  17. 17.
    Tergau F, Naumann U, Paulus W, Steinhoff BJ. Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet 1999;353: 2209.CrossRefPubMedGoogle Scholar
  18. 18.
    Menkes DL, Gruenthal M. Slow-frequency repetitive transcranial magnetic stimulation in a patient with focal cortical dysplasia. Epilepsia 2000;41: 240–242.CrossRefPubMedGoogle Scholar
  19. 19.
    Misawa S, Kuwabara S, Shibuya K, Mamada K, Hattori T. Low-frequency transcranial magnetic stimulation for epilepsia partialis continua due to cortical dysplasia. J Neurol Sci 2005;234: 37–39.CrossRefPubMedGoogle Scholar
  20. 20.
    Rossi S, Ulivelli M, Bartalini S, et al. Reduction of cortical myoclonus-related epileptic activity following slow-frequency rTMS. Neuroreport 2004;15: 293–296.CrossRefPubMedGoogle Scholar
  21. 21.
    Rotenberg A, Depositario-Cabacar D, Bae EH, Harini C, Pascual-Leone A, Takeoka M. Transient suppression of seizures by repetitive transcranial magnetic stimulation in a case of Rasmussen’s encephalitis. Epilepsy Behav 2008;13: 260–262.CrossRefPubMedGoogle Scholar
  22. 22.
    Morales OG, Henry ME, Nobler MS, Wassermann EM, Lisanby SH. Electroconvulsive therapy and repetitive transcranial magnetic stimulation in children and adolescents: a review and report of two cases of epilepsia partialis continua. Child Adolesc Psychiatr Clin N Am 2005;14: 193–210.CrossRefPubMedGoogle Scholar
  23. 23.
    Mecarelli O, Gregori B, Gilio F, et al. Effects of repetitive transcranial magnetic stimulation in a patient with fixation-off sensitivity. Exp Brain Res 2006;173: 180–184.CrossRefPubMedGoogle Scholar
  24. 24.
    Cantello R. Prolonged cortical silent period after transcranial magnetic stimulation in generalized epilepsy. Neurology 2002;58: 1135.PubMedGoogle Scholar
  25. 25.
    Graff-Guerrero A, Gonzáles-Olvera J, Ruiz-García M, Avila-Ordonez U, Vaugier V, García-Reyna JC. rTMS reduces focal brain hyperperfusion in two patients with EPC. Acta Neurol Scand 2004;109: 290–296.CrossRefPubMedGoogle Scholar
  26. 26.
    Brasil-Neto JP, de Araújo DP, Teixeira WA, Araújo VP, Boechat-Barros R. Experimental therapy of epilepsy with transcranial magnetic stimulation: lack of additional benefit with prolonged treatment. Arq Neuropsiquiatr 2004;62: 21–25.PubMedGoogle Scholar
  27. 27.
    Fregni F, Thome-Souza S, Bermpohl F, et al. Antiepileptic effects of repetitive transcranial magnetic stimulation in patients with cortical malformations: an EEG and clinical study. Stereotact Funct Neurosurg 2005;83: 57–62.CrossRefPubMedGoogle Scholar
  28. 28.
    Kinoshita M, Ikeda A, Begum T, Yamamoto J, Hitomi T, Shibasaki H. Low-frequency repetitive transcranial magnetic stimulation for seizure suppression in patients with extratemporal lobe epilepsy-a pilot study. Seizure 2005;14: 387–392.PubMedGoogle Scholar
  29. 29.
    Rotenberg A, Bae EH, Takeoka M, Tormos JM, Schachter SC, Pascual-Leone A. Repetitive transcranial magnetic stimulation in the treatment of epilepsia partialis continua. Epilepsy Behav 2009;14: 253–257.CrossRefPubMedGoogle Scholar
  30. 30.
    Santiago-Rodríguez E, Cárdenas-Morales L, Harmony T, Fernández-Bouzas A, Porras-Kattz E, Hernández A. Repetitive transcranial magnetic stimulation decreases the number of seizures in patients with focal neocortical epilepsy. Seizure 2008;17: 677–683.CrossRefPubMedGoogle Scholar
  31. 31.
    Joo EY, Han SJ, Chung SH, Cho JW, Seo DW, Hong SB. Antiepileptic effects of low-frequency repetitive transcranial magnetic stimulation by different stimulation durations and locations. Clin Neurophysiol 2007;118: 702–708.CrossRefPubMedGoogle Scholar
  32. 32.
    Iyer MB, Schleper N, Wassermann EM. Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation. J Neurosci 2003;23: 10867–10872.PubMedGoogle Scholar
  33. 33.
    Brighina F, Daniele O, Piazza A, Giglia G, Fierro B. Hemispheric cerebellar rTMS to treat drug-resistant epilepsy: case reports. Neurosci Lett 2006;397: 229–233.CrossRefPubMedGoogle Scholar
  34. 34.
    Daniele O, Brighina F, Piazza A, Giglia G, Scalia S, Fierro B. Low-frequency transcranial magnetic stimulation in patients with cortical dysplasia—a preliminary study. J Neurol 2003;250: 761–762.CrossRefPubMedGoogle Scholar
  35. 35.
    Fregni F, Otachi PT, Do Valle A, et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann Neurol 2006;60: 447–445.CrossRefPubMedGoogle Scholar
  36. 36.
    Theodore WH, Hunter K, Chen R, et al. Transcranial magnetic stimulation for the treatment of seizures: a controlled study. Neurology 2002;59: 560–562.PubMedGoogle Scholar
  37. 37.
    Cantello R, Rossi S, Varrasi C, et al. Slow repetitive TMS for drug-resistant epilepsy: clinical and EEG findings of a placebo-controlled trial. Epilepsia 2007;48: 366–374.CrossRefPubMedGoogle Scholar
  38. 38.
    Inghilleri M, Gilio F, Conte A, et al. Topiramate and cortical excitability in humans: a study with repetitive transcranial magnetic stimulation. Exp Brain Res 2006;174: 667–672.CrossRefPubMedGoogle Scholar
  39. 39.
    Inghilleri M, Conte A, Frasca V, et al. Antiepileptic drugs and cortical excitability: a study with repetitive transcranial stimulation. Exp Brain Res 2004;154: 488–493.CrossRefPubMedGoogle Scholar
  40. 40.
    Fregni F, Boggio PS, Valle AC, et al. Homeostatic effects of plasma valproate levels on corticospinal excitability changes induced by 1Hz rTMS in patients with juvenile myoclonic epilepsy. Clin Neurophysiol 2006;117: 1217–1227.CrossRefPubMedGoogle Scholar
  41. 41.
    Bindman LJ, Lippold OCJ, Redfearn JWT. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 1964;172: 369–382.PubMedGoogle Scholar
  42. 42.
    Lolas F. Brain polarization: behavioral and therapeutic effects. Biol Psychiatry 1977;12: 37–47.PubMedGoogle Scholar
  43. 43.
    Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W. Modulation of cortical excitability by weak direct current stimulation—technical, safety and functional aspects. Suppl Clin Neurophysiol 2003;56: 255–276.CrossRefPubMedGoogle Scholar
  44. 44.
    Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001;57: 1899–1901.PubMedGoogle Scholar
  45. 45.
    Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell J, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophys 2003; 114: 600–604.CrossRefGoogle Scholar
  46. 46.
    Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, Paulus W. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 2004;29: 1573–1578.CrossRefPubMedGoogle Scholar
  47. 47.
    Nitsche MA, Grundey J, Liebetanz D, Lang N, Tergau F, Paulus W. Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb Cortex 2004;14: 1240–1245.CrossRefPubMedGoogle Scholar
  48. 48.
    Nitsche MA, Lampe C, Antal A, et al. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci 2006;23: 1651–1657.CrossRefPubMedGoogle Scholar
  49. 49.
    Lian J, Bikson M, Sciortino C, Stacey WC, Durand DM. Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J Physiol 2003;547: 427–434.CrossRefPubMedGoogle Scholar
  50. 50.
    Liebetanz D, Klinker F, Hering D, et al. Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 2006;47: 1216–1224.CrossRefPubMedGoogle Scholar
  51. 51.
    Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia 2006; 47: 335–342.CrossRefPubMedGoogle Scholar
  52. 52.
    Nitsche MA, Cohen LG, Wassermann EM, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimulation 2008;1: 206–223.CrossRefPubMedGoogle Scholar
  53. 53.
    Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 1998;108: 1–16.CrossRefPubMedGoogle Scholar
  54. 54.
    Siebner HR, Lang N, Rizzo V, et al. Reconditioning of low-frequency repetitive transcra-cranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 2004;24: 3379–3385.CrossRefPubMedGoogle Scholar
  55. 55.
    Nitsche MA, Doemkes S, Karaköse T, et al. Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 2007;97: 3109–3117.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2009

Authors and Affiliations

  1. 1.Department of Clinical NeurophysiologyGeorg-August-UniversityGoettingenGermany

Personalised recommendations