, Volume 6, Issue 1, pp 152–162 | Cite as

Memoquin: A multi-target-directed ligand as an innovative therapeutic opportunity for Alzheimer’s disease

  • Maria Laura Bolognesi
  • Andrea Cavalli
  • Carlo Melchiorre
Review Article


Alzheimer’s disease is currently thought to be a complex, multifactorial syndrome, unlikely to arise from a single causal factor; instead, a number of related biological alterations are thought to contribute to its pathogenesis. This may explain why the currently available drugs, developed according to the classic drug discovery paradigm of “one-molecule-one-target,” have turned out to be palliative. In light of this, drug combinations that can act at different levels of the neurotoxic cascade offer new avenues toward curing Alzheimer’s and other neurodegenerative diseases. In parallel, a new strategy is emerging—that of developing a single chemical entity able to modulate multiple targets simultaneously. This has led to a new paradigm in medicinal chemistry, the “multi-target-directed ligand” design strategy, which has already been successfully exploited at both academic and industrial levels. As a case study, we report here on memoquin, a new molecule developed following this strategy. The in vitro and in vivo biological profile of memoquin demonstrates the suitability of the new strategy for obtaining innovative drug candidates for the treatment of neurodegenerative diseases.

Key Words

Multifunctional compounds AD11 mice acetylcholinesterase amyloid antioxidant benzoquinones tau hyperphosphorylation 


  1. 1.
    Brookmeyer RS, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimer Dementia 2007;3:186–191.CrossRefGoogle Scholar
  2. 2.
    Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005;366:2112–2117.CrossRefPubMedGoogle Scholar
  3. 3.
    Small DH. Acetylcholinesterase inhibitors for the treatment of dementia in Alzheimer’s disease: do we need new inhibitors? Expert Opin Emerg Drugs 2005;10:817–825.CrossRefPubMedGoogle Scholar
  4. 4.
    Roberson ED, Mucke L. 100 years and counting: prospects for defeating Alzheimer’s disease. Science 2006;314:781–784.CrossRefPubMedGoogle Scholar
  5. 5.
    Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353–356.CrossRefPubMedGoogle Scholar
  6. 6.
    Golde TE. Disease modifying therapy for AD? J Neurochem 2006;99:689–707.CrossRefPubMedGoogle Scholar
  7. 7.
    Small DH, Mok SS, Bomstein JC. Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci 2001;2:595–598.CrossRefPubMedGoogle Scholar
  8. 8.
    Frantz S. Drug discovery: playing dirty. Nature 2005;437:942–943.CrossRefPubMedGoogle Scholar
  9. 9.
    Iqbal K, Grundke-Iqbal I. Alzheimer disease is multifactorial and heterogeneous. Neurobiol Aging 2000;21: 901–902; discussion 903–904.CrossRefPubMedGoogle Scholar
  10. 10.
    Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 2005;48: 6523–6543.CrossRefPubMedGoogle Scholar
  11. 11.
    Fallow MR. Utilizing combination therapy in the treatment of Alzheimer’s disease. Expert Rev Neurother 2004;4: 799–808.CrossRefGoogle Scholar
  12. 12.
    Farlow MR, Miller ML, Pejovic V. Treatment options in Alzheimer’s disease: maximizing benefit, managing expectations. Dement Geriatr Cogn Disord 2008;25:408–422.CrossRefPubMedGoogle Scholar
  13. 13.
    Toews ML, Bylund DB. Pharmacologic principles for combination therapy. Proc Am Thorac Soc 2005;2: 282–289; discussion 290–291.CrossRefPubMedGoogle Scholar
  14. 14.
    Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 2008;51:347–372.CrossRefPubMedGoogle Scholar
  15. 15.
    Small G, Dubois B. A review of compliance to treatment in Alzheimer’s disease: potential benefits of a transdermal patch. Curr Med Res Opin 2007;23:2705–2713.CrossRefPubMedGoogle Scholar
  16. 16.
    Van der Schyf CJ, Mandel S, Geldenhuys WJ, Amit T, Avramovich Y, Zheng H, et al. Novel multifunctional anti-Alzheimer drugs with various CNS neurotransmitter targets and neuroprotective moieties. Curr Alzheimer Res 2007;4:522–536.CrossRefPubMedGoogle Scholar
  17. 17.
    Melchiorre C, Andrisano V, Bolognesi ML, Budriesi R, Cavalli A, Cavrini V, et al. Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer’s disease. J Med Chem 1998;41:4186–4189.CrossRefPubMedGoogle Scholar
  18. 18.
    Doods HN, Quirion R, Mihm G, Engel W, Rudolf K, Entzeroth M, et al. Therapeutic potential of CNS-active M2 antagonists: novel structures and pharmacology. Life Sci 1993;52:497–503.CrossRefPubMedGoogle Scholar
  19. 19.
    Munoz-Torrero D, Camps P. Dimeric and hybrid anti-Alzheimer drug candidates. Curr Med Chem 2006;13: 399–422.CrossRefPubMedGoogle Scholar
  20. 20.
    Alvarez A, Alarcon R, Opazo C, Campos EO, Munoz FJ, Calderon FH, et al. Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. J Neurosci 1998;18:3213–3223.PubMedGoogle Scholar
  21. 21.
    Campos EO, Alvarez A, Inestrosa NC. Brain acetylcholinesterase promotes amyloid-beta-peptide aggregation but does not hydrolyze amyloid precursor protein peptides. Neurochem Res 1998;23:135–140.CrossRefPubMedGoogle Scholar
  22. 22.
    Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 1996;16:881–891.CrossRefPubMedGoogle Scholar
  23. 23.
    Bourne Y, Taylor P, Bougis PE, Marchot P. Crystal structure of mouse acetylcholinesterase. A peripheral site-occluding loop in a tetrameric assembly. J Biol Chem 1999;274:2963–2970.CrossRefPubMedGoogle Scholar
  24. 24.
    Castro A, Martinez A. Peripheral and dual binding site acetylcholinesterase inhibitors: implications in treatment of Alzheimer’s disease. Mini Rev Med Chem 2001;1:267–272.CrossRefPubMedGoogle Scholar
  25. 25.
    Recanatini M, Valenti P. Acetylcholinesterase inhibitors as a starting point towards improved Alzheimer’s disease therapeutics. Curr Pharm Des 2004;10:3157–3166.CrossRefPubMedGoogle Scholar
  26. 26.
    Castro A, Martinez A. Targeting Beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des 2006;12:4377–4387.CrossRefPubMedGoogle Scholar
  27. 27.
    Melchiorre C, Antonello A, Banzi R, Bolognesi ML, Minarini A, Rosini M, et al. Polymethylene tetraamine backbone as template for the development of biologically active polyamines. Med Res Rev 2003;23: 200–233.CrossRefPubMedGoogle Scholar
  28. 28.
    Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Melchiorre C. From dual binding site acetylcholinesterase inhibitors to multi-target-directed ligands (MTDLs): a step forward in the treatment of Alzheimer’s disease. Mini Rev Med Chem 2008;8:960–967.CrossRefPubMedGoogle Scholar
  29. 29.
    Gutzmann H, Hadler D. Sustained efficacy and safety of idebenone in the treatment of Alzheimer’s disease: update on a 2-year double-blind multicentre study. J Neural Transm Suppl 1998;54:301–310.PubMedGoogle Scholar
  30. 30.
    Hirai K, Hayako H, Kato K, Miyamoto M. Idebenone protects hippocampal neurons against amyloid beta-peptide-induced neurotoxicity in rat primary cultures. Naunyn Schmiedebergs Arch Pharmacol 1998;358:582–585.CrossRefPubMedGoogle Scholar
  31. 31.
    Moreira PI, Santos MS, Oliveira CR. Alzheimer’s disease: a lesson from mitochondrial dysfunction. Antioxid Redox Signal 2007;9:1621–1630.CrossRefPubMedGoogle Scholar
  32. 32.
    Adkins JC, Noble S. Idebenone: a review of its use in mild to moderate Alzheimer’s disease. CNS Drugs 1998;9:403–419.CrossRefGoogle Scholar
  33. 33.
    Cavalli A, Bolognesi ML, Capsoni S, Andrisano V, Bartolini M, Margotti E, et al. A small molecule targeting the multifactorial nature of Alzheimer’s disease. Angew Chem Int Ed Engl 2007;46: 3689–3692.CrossRefPubMedGoogle Scholar
  34. 34.
    Nesterov EE, Skoch J, Hyman BT, Klunk WE, Bacskai BJ, Swager TM. In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. Angew Chem Int Ed Engl 2005;44:5452–5456.CrossRefPubMedGoogle Scholar
  35. 35.
    Bolognesi ML, Banzi R, Minarini A, Melchiorre C, inventors. Process for preparation of 1,4-benzoquinone-2,5-diamines by reaction of amines with 1,4-benzoquinones bearing leaving groups at the 2- and 5-positions. PCT Int Appl WO 2006134457.Google Scholar
  36. 36.
    Bolognesi ML, Banzi R, Bartolini M, Cavalli A, Tarozzi A, Andrisano V, et al. Novel class of quinone-bearing polyamines as multi-target-directed ligands to combat Alzheimer’s disease. J Med Chem 2007;50:4882–4897.CrossRefPubMedGoogle Scholar
  37. 37.
    Andrisano V, Bartolini M, Bolognesi ML, Cavalli A, Melchiorre C, Recanatini M, inventors. Preparation of 2,5-bis-diamine-[1,4]benzoquinone derivatives for the treatment of Alzheimer’s disease and a process for their preparation and intermediates therefor. PCT Int Appl WO 2003087035.Google Scholar
  38. 38.
    Mordente A, Martorana GE, Minotti G, Giardina B. Antioxidant properties of 2,3-dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzoquinone (idebenone). Chem Res Toxicol 1998;11:54–63.CrossRefPubMedGoogle Scholar
  39. 39.
    Raina AK, Templeton DJ, Deak JC, Perry G, Smith MA. Quinone reductase (NQO1), a sensitive redox indicator, is increased in Alzheimer’s disease. Redox Rep 1999;4:23–27.CrossRefPubMedGoogle Scholar
  40. 40.
    Moreira PI, Siedlak SL, Aliev G, Zhu X, Cash AD, Smith MA, et al. Oxidative stress mechanisms and potential therapeutics in Alzheimer disease. J Neural Transm 2005;112:921–932.CrossRefPubMedGoogle Scholar
  41. 41.
    SantaCruz KS, Yazlovitskaya E, Collins J, Johnson J, DeCarli C. Regional NAD(P)H:quinone oxidoreductase activity in Alzheimer’s disease. Neurobiol Aging 2004;25:63–69.CrossRefPubMedGoogle Scholar
  42. 42.
    Kang YH, Pezzuto JM. Induction of quinone reductase as a primary screen for natural product anticarcinogens. Methods Enzymol 2004;382:380–414.CrossRefPubMedGoogle Scholar
  43. 43.
    Shen L, Ji HF, Zhang HY. How to understand the dichotomy of antioxidants. Biochem Biophys Res Commun 2007;362:543–545.CrossRefPubMedGoogle Scholar
  44. 44.
    Bartolini M, Bertucci C, Cavrini V, Andrisano V. Beta-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 2003;65:407–416.CrossRefPubMedGoogle Scholar
  45. 45.
    Alvarez A, Opazo C, Alarcon R, Garrido J, Inestrosa NC. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol 1997;272: 348–361.CrossRefPubMedGoogle Scholar
  46. 46.
    Bolognesi ML, Andrisano V, Bartolini M, Banzi R, Melchiorre C. Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced amyloid-beta aggregation. J Med Chem 2005;48:24–27.CrossRefPubMedGoogle Scholar
  47. 47.
    Piazzi L, Rampa A, Bisi A, Gobbi S, Belluti F, Cavalli A, et al. 3-(4-[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: a dual function lead for Alzheimer’s disease therapy. J Med Chem 2003;46: 2279–2282.CrossRefPubMedGoogle Scholar
  48. 48.
    Dickerson TJ, Beuscher AE 4th, Rogers CJ, Hixon MS, Yamamoto N, Xu Y, et al. Discovery of acetylcholinesterase peripheral anionic site ligands through computational refinement of a directed library. Biochemistry 2005;44:14845–14853.CrossRefPubMedGoogle Scholar
  49. 49.
    Munoz-Ruiz P, Rubio L, Garcia-Palomero E, Dorronsoro I, del Monte-Millan M, Valenzuela R, et al. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J Med Chem 2005;48:7223–7233.CrossRefPubMedGoogle Scholar
  50. 50.
    Xie Q, Wang H, Xia Z, Lu M, Zhang W, Wang X, et al. Bis-(−)-nor-meptazinols as novel nanomolar cholinesterase inhibitors with high inhibitory potency on amyloid-beta aggregation. J Med Chem 2008;51:2027–2036.CrossRefPubMedGoogle Scholar
  51. 51.
    Camps P, Formosa X, Galdeano C, Gomez T, Munoz-Torrero D, Scarpellini M, et al. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation. J Med Chem 2008;51:3588–3598.CrossRefPubMedGoogle Scholar
  52. 52.
    Rees TM, Brimijoin S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today (Barc) 2003;39:75–83.CrossRefGoogle Scholar
  53. 53.
    Ono K, Hasegawa K, Naiki H, Yamada M. Reformed beta-amyloid fibrils are destabilized by coenzyme Q10 in vitro. Biochem Biophys Res Commun 2005;330:111–116.CrossRefPubMedGoogle Scholar
  54. 54.
    Tomiyama T, Shoji A, Kataoka K, Suwa Y, Asano S, Kaneko H, et al. Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J Biol Chem 1996;271:6839–6844.CrossRefPubMedGoogle Scholar
  55. 55.
    Bartolini M, Bertucci C, Bolognesi ML, Cavalli A, Melchiorre C, Andrisano V. Insight into the kinetic of amyloid beta (1–42) peptide self-aggregation: elucidation of inhibitors’ mechanism of action. Chembiochem 2007;8:2152–2161.CrossRefPubMedGoogle Scholar
  56. 56.
    Forloni G, Colombo L, Girola L, Tagliavini F, Salmona M. Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett 2001;487:404–407.CrossRefPubMedGoogle Scholar
  57. 57.
    Dewachter I, Van Leuven F. Secretases as targets for the treatment of Alzheimer’s disease: the prospects. Lancet Neurol 2002;1:409–416.CrossRefPubMedGoogle Scholar
  58. 58.
    Melnikova I. Therapies for Alzheimer’s disease. Nat Rev Drug Discov 2007;6:341–342.CrossRefPubMedGoogle Scholar
  59. 59.
    Capsoni S, Ugolini G, Comparini A, Ruberti F, Berardi N, Cattaneo A. Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci U S A 2000;97:6826–6831.CrossRefPubMedGoogle Scholar
  60. 60.
    Capsoni S, Cattaneo A. On the molecular basis linking Nerve Growth Factor (NGF) to Alzheimer’s disease. Cell Mol Neurobiol 2006;26:619–633.CrossRefPubMedGoogle Scholar
  61. 61.
    Capsoni S, Giannotta S, Cattaneo A. Beta-amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci 2002;21:15–28.CrossRefPubMedGoogle Scholar
  62. 62.
    Capsoni S, Andrisano V, Bartolini M, Bolognesi ML, Cavalli A, Margotti E, et al. S4-04-04 Memoquin, a novel multifunctional compound for Alzheimer’s disease: An up-date on preclinical studies. Alzheimer Dementia 2006;2(3 Suppl 1):S73-S74.CrossRefGoogle Scholar
  63. 63.
    Liu K, Xu L, Szalkowski D, Li Z, Ding V, Kwei G, et al. Discovery of a potent, highly selective, and orally efficacious small-molecule activator of the insulin receptor. J Med Chem 2000;43: 3487–3494.CrossRefPubMedGoogle Scholar
  64. 64.
    Wang Y, Santa-Cruz K, DeCarli C, Johnson JA. NAD(P)H:quinone oxidoreductase activity is increased in hippocampal pyramidal neurons of patients with Alzheimer’s disease. Neurobiol Aging 2000;21:525–531.CrossRefPubMedGoogle Scholar
  65. 65.
    Azzi A. Oxidative stress: A dead end or a laboratory hypothesis? Biochem Biophys Res Commun 2007;362:230–232.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2009

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, Alma Mater StudiorumUniversity of BolognaBolognaItaly
  2. 2.Department of Drug Discovery and DevelopmentItalian Institute of TechnologyGenovaItaly

Personalised recommendations