, Volume 6, Issue 1, pp 78–85 | Cite as

Building a better antipsychotic: Receptor targets for the treatment of multiple symptom dimensions of schizophrenia

  • Dennis H. Kim
  • Matthew J. Maneen
  • Stephen M. Stahl
Review Article


Attempts to develop selective (“magic bullet”) drugs for the treatment of schizophrenia have been frustrated by the complex etiology of the disease. The symptomatology of schizophrenia does not appear to arise from a single neurobiological entity, but rather may be derived from pathology at one or more receptor types. This has prompted multifactorial approaches to the development of new therapeutics, as embodied by polypharmacy and an alternative (or augmentative) strategy known as ldintramolecular polypharmacy,” in which a single drug possesses the capacity to affect multiple receptor types. Atypical antipsychotics are a well-known example of this approach; each atypical possesses a unique portfolio of activities at receptors that may contribute to therapeutic effects (as well as side effects). In this article we present a discussion of some of the receptor targets that are currently thought to mediate symptoms of schizophrenia, as well as their possible implications for the design of future multifunctional antipsychotics.

Key Words

Antipsychotics intramolecular polypharmacy receptors negative symptoms glutamatergic neurotransmission 


  1. 1.
    Kirkpatrick B, Fenton WS, Carpenter WT Jr., Marder SR. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull 2006;32:214–219.CrossRefPubMedGoogle Scholar
  2. 2.
    Stahl SM. Stahl’s essential psychopharmacology: neuroscientific basis and practical applications, 3rd ed. New York: Cambridge University Press, 2008.Google Scholar
  3. 3.
    Strange PG. Antipsychotic drug action: antagonism, inverse agonism or partial agonism. Trends Pharmacol Sci 2008;29: 314–321.CrossRefPubMedGoogle Scholar
  4. 4.
    Kapur S, Seeman P. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry 2001;158:360–369.CrossRefPubMedGoogle Scholar
  5. 5.
    Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry 2005;10:79–104.CrossRefPubMedGoogle Scholar
  6. 6.
    Meltzer HY. What’s atypical about atypical antipsychotic drugs? Curr Opin Pharmacol 2004;4:53–57.CrossRefPubMedGoogle Scholar
  7. 7.
    Schmidt AW, Lebel LA, Howard HR Jr., Zom SH. Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur J Pharmacol 2001;425:197–201.CrossRefPubMedGoogle Scholar
  8. 8.
    Stahl SM. Do dopamine partial agonists have partial efficacy as antipsychotics? CNS Spectr 2008;13:279–282.PubMedGoogle Scholar
  9. 9.
    Bums KD, Molski TF, Xu C, et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 2002;302:381–389.CrossRefGoogle Scholar
  10. 10.
    Calsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia—therapeutic implications. Biol Psychiatry 1999;46:1388–1395.CrossRefGoogle Scholar
  11. 11.
    Lawler CP, Prioleau C, Lewis MM, et al. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 1999;20:612–627.CrossRefPubMedGoogle Scholar
  12. 12.
    Mamo D, Graff A, Mizrahi R, Shammi CM, Romeyer F, Kapur S. Differential effects of aripiprazole on D2, 5-HT2, and 5-HT1A receptor occupancy in patients with schizophrenia: a triple tracer PET study. Am J Psychiatry 2007;164:1411–1417.CrossRefPubMedGoogle Scholar
  13. 13.
    Berman RM, Marcus RN, Swanink R, et al. The efficacy and safety of aripiprazole as adjunctive therapy in major depressive disorder: a multicenter, randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2007;68:843–853.CrossRefPubMedGoogle Scholar
  14. 14.
    Thase ME, Jonas A, Khan A, et al. Aripiprazole monotherapy in nonpsychotic bipolar I depression: results of 2 randomized, placebo-controlled studies. J Clin Psychopharmacol 2008;28:13–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY. 5-HT2A and D2 receptor blockade increases cortical DA release via 5-HT1A receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 2001;76:1521–1531.CrossRefPubMedGoogle Scholar
  16. 16.
    Azmitia EC, Gannon PJ, Kheck NM, Whitaker-Azmitia PM. Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 1996;14:35–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Sumiyoshi T, Matsui M, Nohara S, et al. Enhancement of cognitive performance in schizophrenia by addition of tandospirone to neuroleptic treatment. Am J Psychiatry 2001;158:1722–1725.CrossRefPubMedGoogle Scholar
  18. 18.
    Yasuno F, Suhara T, Nakayama T, et al. Inhibitory effect of hippocampal 5-HT1A receptors on human explicit memory. Am J Psychiatry 2003;160:334–340.CrossRefPubMedGoogle Scholar
  19. 19.
    Gray JA, Roth BL. Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophr Bull 2007;33:1100–1119.CrossRefPubMedGoogle Scholar
  20. 20.
    Alex KD, Pehek EA. Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 2007;113:296–320.CrossRefPubMedGoogle Scholar
  21. 21.
    Millan MJ, Dekeyne A, Gobert A. Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT, release in the frontal cortex in vivo. Neuropharmacology 1998;37:953–955.CrossRefPubMedGoogle Scholar
  22. 22.
    Gray JA, Roth BL. The pipeline and future of drug development in schizophrenia. Mol Psychiatry 2007;12: 904–922.CrossRefPubMedGoogle Scholar
  23. 23.
    Alex KD, Yavanian GJ, McFarlane HG, Pluto CP, Pehek EA. Modulation of dopamine release by striatal 5-HT2C receptors. Synapse 2005;55:242–251.CrossRefPubMedGoogle Scholar
  24. 24.
    Gunes A, Dahl ML, Spina E, Scordo MG. Further evidence for the association between 5-HT2C receptor gene polymorphisms and extrapyramidal side effects in male schizophrenic patients. Eur J Clin Pharmacol 2008;64:477–482.CrossRefPubMedGoogle Scholar
  25. 25.
    Reavill C, Kettle A, Holland V, Riley G, Blackburn TP. Attenuation of haloperidol-induced catalepsy by a 5-HT2C receptor antagonist. Br J Pharmacol 1999;126:572–574.CrossRefPubMedGoogle Scholar
  26. 26.
    Stahl SM. Novel mechanism of antidepressant action: norepinephrine and dopamine disinhibition (NDDI) plus melatonergic agonism. Int J Neuropsychopharmacol 2007;10:575–578.CrossRefPubMedGoogle Scholar
  27. 27.
    Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem 1993;268:23422–23426.PubMedGoogle Scholar
  28. 28.
    Lovenberg TW, Baron BM, de LL, et al. A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 1993;11:449–458.CrossRefPubMedGoogle Scholar
  29. 29.
    Ruat M, Traiffort E, Leurs R, et al. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci USA 1993;90:8547–8551.CrossRefPubMedGoogle Scholar
  30. 30.
    Mullins UL, Gianutsos G, Eison AS. Effects of antidepressants on 5-HT7 receptor regulation in the rat hypothalamus. Neuropsychopharmacology 1999;21:352–367.CrossRefPubMedGoogle Scholar
  31. 31.
    Roth BL, Craigo SC, Choudhary MS, et al. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 1994;268:1403–1410.PubMedGoogle Scholar
  32. 32.
    Thomas DR, Melotto S, Massagrande M, et al. SB-656104-A, a novel selective 5-HT7 receptor antagonist, modulates REM sleep in rats. Br J Pharmacol 2003;139:705–714.CrossRefPubMedGoogle Scholar
  33. 33.
    Guscott MR, Egan E, Cook GP, et al. The hypothermic effect of 5-CT in mice is mediated through the 5-HT7 receptor. Neuropharmacology 2003;44:1031–1037.CrossRefPubMedGoogle Scholar
  34. 34.
    Hagan JJ, Rice GW, Jeffrey P, et al. Characterization of SB-269970-A, a selective 5-HT7 receptor antagonist. Br J Pharmacol 2000;130:539–548.CrossRefPubMedGoogle Scholar
  35. 35.
    Hedlund PB, Danielson PE, Thomas EA, Slanina K, Carson MJ, Sutcliffe JG. No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc Natl Acad Sci USA 2003;100:1375–1380.CrossRefPubMedGoogle Scholar
  36. 36.
    Manuel-Apolinar L, Meneses A. 8-OH-DPAT facilitated memory consolidation and increased hippocampal and cortical cAMP production. Behav Brain Res 2004;148:179–184.CrossRefPubMedGoogle Scholar
  37. 37.
    Roberts AJ, Krucker T, Levy CL, Slanina KA, Sutcliffe JG, Hedlund PB. Mice lacking 5-HT7 receptors show specific impairments in contextual learning. Eur J Neurosci 2004;19:1913–1922.CrossRefPubMedGoogle Scholar
  38. 38.
    Jorgensen H, Riis M, Knigge U, Kjaer A, Warberg J. Serotonin receptors involved in vasopressin and oxytocin secretion. J Neuroendocrinol 2003;15:242–249.CrossRefPubMedGoogle Scholar
  39. 39.
    Laplante P, Diorio J, Meaney MJ. Serotonin regulates hippocampal glucocorticoid receptor expression via a 5-HT7 receptor. Brain Res Dev Brain Res 2002;139:199–203.CrossRefPubMedGoogle Scholar
  40. 40.
    Stahl SM. Beyond the dopamine hypothesis to the NMDA glutamate receptor hypofunction hypothesis of schizophrenia. CNS Spectr 2007;12:265–268.PubMedGoogle Scholar
  41. 41.
    Newcomer JW, Farber NB, Jevtovic-Todorovic V, et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 1999;20:106–118.CrossRefPubMedGoogle Scholar
  42. 42.
    Olney JW, Newcomer JW, Farber NB. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 1999;33:523–533.CrossRefPubMedGoogle Scholar
  43. 43.
    Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 1998;281:1349–1352.CrossRefPubMedGoogle Scholar
  44. 44.
    Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 2004;9:984–997.CrossRefPubMedGoogle Scholar
  45. 45.
    Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987;325:529–531.CrossRefPubMedGoogle Scholar
  46. 46.
    Mothet JP, Parent AT, Wolosker H, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 2000;97:4926–4931.CrossRefPubMedGoogle Scholar
  47. 47.
    Goff DC, Herz L, Posever T, et al. A six-month, placebo-controlled trial of D-cycloserine co-administered with conventional antipsychotics in schizophrenia patients. Psychopharmacology (Berl) 2005;179:144–150.CrossRefGoogle Scholar
  48. 48.
    Heresco-Levy U, Javitt DC. Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr Res 2004;66:89–96.CrossRefPubMedGoogle Scholar
  49. 49.
    Tsai GE, Yang P, Chang YC, Chong MY. D-alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 2006;59:230–234.CrossRefPubMedGoogle Scholar
  50. 50.
    Javitt DC. Is the glycine site half saturated or half unsaturated? Effects of glutamatergic drugs in schizophrenia patients. Curr Opin Psychiatry 2006;19:151–157.CrossRefPubMedGoogle Scholar
  51. 51.
    van Berckel BN, Evenblij CN, van Loon BJ, et al. D-cycloserine increases positive symptoms in chronic schizophrenic patients when administered in addition to antipsychotics: a double-blind, parallel, placebo-controlled study. Neuropsychopharmacology 1999;21:203–210.CrossRefPubMedGoogle Scholar
  52. 52.
    Bergeron R, Meyer TM, Coyle JT, Greene RW. Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 1998;95:15730–15734.CrossRefPubMedGoogle Scholar
  53. 53.
    Stahl SM. Novel therapeutics for schizophrenia: targeting glycine modulation of NMDA glutamate receptors. CNS Spectr 2007;12:423–427.PubMedGoogle Scholar
  54. 54.
    Burstein ES, Ma J, Wong S, et al. Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J Pharmacol Exp Ther 2005;315:1278–1287.CrossRefPubMedGoogle Scholar
  55. 55.
    Sur C, Mallorga PJ, Wittmann M, et al. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc Natl Acad Sci USA 2003;100:13674–13679.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2009

Authors and Affiliations

  • Dennis H. Kim
    • 1
  • Matthew J. Maneen
    • 1
  • Stephen M. Stahl
    • 2
  1. 1.Arbor ScientiaCarlsbad
  2. 2.Department of PsychiatryUniversity of California, San Diego, School of MedicineLa Jolla

Personalised recommendations