Neurotherapeutics

, Volume 5, Issue 3, pp 409–414

New therapeutic targets in the neurovascular pathway in Alzheimer’s disease

Review Article

Summary

Recent findings indicate that neurovascular dysfunction is an integral part of Alzheimer’s disease (AD). Changes in the vascular system of the brain may significantly contribute to the onset and progression of dementia and to the development of a chronic neurodegenerative process. In contrast to the neurocentric view, which proposes that changes in chronic neurodegenerative disorders, including AD, can be attributed solely to neuronal disorder and neuronal dysfunction, the neurovascular concept proposes that dysfunction of non-neuronal neighboring cells and disintegration of neurovascular unit function may contribute to the pathogenesis of dementias in the elderly population, and understanding these processes will be crucial for the development of new therapeutic approaches to normalize both vascular and neuronal dysfunction. In this review, I discuss briefly the role of vascular factors and vascular disorder in AD, the link between cerebrovascular disorder and AD, the clearance hypothesis for AD, the role of RAGE (receptor for advanced glycation end products) and LRP (low density lipoprotein receptor related protein 1) in maintaining the levels of amyloid β-peptide (Aβ) in the brain by controlling its transport across the blood—brain barrier (BBB), and the role of impaired vascular remodeling and cerebral blood flow dysregulation in the disease process. The therapeutic strategies based on new targets in the AD neurovascular pathway, such as RAGE and LRP receptors, and on a few selected genes implicated in AD neurovascular dysfunction (e.g., mesenchyme homeobox gene 2 and myocardin) are also discussed.

Key Words

Blood—brain barrier RAGE LRP amyloid β-peptide ischemia angiogenesis dementia 

References

  1. 1.
    Hofman A, Ott A, Breteler MM, et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 1997;349: 151–154.CrossRefPubMedGoogle Scholar
  2. 2.
    Ruitenberg A, den Heijer T, Bakker SL, et al. Cerebral hypoper-fusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 2005;57: 789–794.CrossRefPubMedGoogle Scholar
  3. 3.
    Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004;5: 347–360.CrossRefPubMedGoogle Scholar
  4. 4.
    Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 2005;28: 202–208.CrossRefPubMedGoogle Scholar
  5. 5.
    de la Tone JC. How do heart disease and stroke become risk factors for Alzheimer’s disease? Neural Res 2006;28: 637–644.CrossRefGoogle Scholar
  6. 6.
    Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R. Relation of diabetes to mild cognitive impairment. Arch Neurol 2007;64: 570–575.CrossRefPubMedGoogle Scholar
  7. 7.
    Rovelet-Lecrux A, Hannequin D, Raux G, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 2006;38: 24–26.CrossRefPubMedGoogle Scholar
  8. 8.
    Hardy J. A hundred years of Alzheimer’s disease research. Neuron 2006;52: 3–13.CrossRefPubMedGoogle Scholar
  9. 9.
    Deane R, Zlokovic BV. Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 2007;4: 191–197.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 1991;251: 675–678.CrossRefPubMedGoogle Scholar
  11. 11.
    Santacruz K, Lewis J, Spires T, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005;309: 476–481.CrossRefPubMedGoogle Scholar
  12. 12.
    Tanzi RE. The synaptic Aβ hypothesis of Alzheimer disease. Nat Neurosci 2005;8: 977–979.CrossRefPubMedGoogle Scholar
  13. 13.
    Ghiso J, Frangione B. Amyloidosis and Alzheimer’s disease. Adv Drug Deliv Rev 2002;54: 1539–1551.CrossRefPubMedGoogle Scholar
  14. 14.
    Greenberg SM, Gurol ME, Rosand J, Smith EE. Amyloid angiopathy-related vascular cognitive impairment. Stroke 2004;35: 2616–2619.CrossRefPubMedGoogle Scholar
  15. 15.
    Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008;57: 178–201.CrossRefPubMedGoogle Scholar
  16. 16.
    Casserly I, Topol E. Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet 2004;363: 1139–1146.CrossRefPubMedGoogle Scholar
  17. 17.
    Beach TG, Wilson JR, Sue LI, et al. Circle of Willis atherosclerosis: association with Alzheimer’s disease, neuritic plaques and neurofibrillary tangles. Acta Neuropathol 2007;113: 13–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 1997;277: 813–817.CrossRefPubMedGoogle Scholar
  19. 19.
    Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003;348: 1215–1222.CrossRefPubMedGoogle Scholar
  20. 20.
    Chui HC, Zarow C, Mack WJ, et al. Cognitive impact of subcortical vascular and Alzheimer’s disease pathology. Ann Neurol 2006;60: 677–687.CrossRefPubMedGoogle Scholar
  21. 21.
    Griffin JH, Zlokovic B, Fernandez JA. Activated protein C: potential therapy for severe sepsis, thrombosis, and stroke. Semin Hematol 2002;39: 197–205.CrossRefPubMedGoogle Scholar
  22. 22.
    Gordon-Krajcer W, Kozniewska E, Lazarewicz JW, Ksiezak-Reding H. Differential changes in phosphorylation of tau at PHF-1 and 12E8 epitopes during brain ischemia and reperfusion in gerbils. Neurochem Res 2007;32: 729–737.CrossRefPubMedGoogle Scholar
  23. 23.
    Wen Y, Yang SH, Liu R, et al. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochim Biophys Acta 2007;1772: 473–483.PubMedGoogle Scholar
  24. 24.
    Thomas T, Thomas G, McLendon C, Sutton T, Mullan M. β-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 1996;380: 168–171.CrossRefPubMedGoogle Scholar
  25. 25.
    Iadecola C, Zhang F, Niwa K, et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 1999;2: 157–161.CrossRefPubMedGoogle Scholar
  26. 26.
    Niwa K, Younkin L, Ebeling C, et al. Aβ 1–40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci U S A 2000;97: 9735–9740.CrossRefPubMedGoogle Scholar
  27. 27.
    Takano T, Han X, Deane R, Zlokovic B, Nedergaard M. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann N Y Acad Sci 2007;1097: 40–50.CrossRefPubMedGoogle Scholar
  28. 28.
    Smith CD, Andersen AH, Kryscio RJ, et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease. Neurology 1999;53: 1391–1396.PubMedGoogle Scholar
  29. 29.
    Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 2000;343: 450–456.CrossRefPubMedGoogle Scholar
  30. 30.
    Drake CT, Iadecola C. The role of neuronal signaling in controlling cerebral blood flow. Brain Lang 2007;102: 141–152.CrossRefPubMedGoogle Scholar
  31. 31.
    Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005;120: 545–555.CrossRefPubMedGoogle Scholar
  32. 32.
    Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B. Clearance of amyloid β-peptide from brain: transport or metabolism? Nat Med 2000;6: 718–719.CrossRefGoogle Scholar
  33. 33.
    Selkoe DJ. Clearing the brain’s amyloid cobwebs. Neuron 2001; 32: 177–180.CrossRefPubMedGoogle Scholar
  34. 34.
    Tanzi RE, Moir RD, Wagner SL. Clearance of Alzheimer’s Aβ peptide: the many roads to perdition. Neuron 2004;43: 605–608.PubMedGoogle Scholar
  35. 35.
    Holtzman DM, Zlokovic BV. Role of Aβ transport and clearance in the pathogenesis and treatment of Alzheimer’s disease. In: Sisodia S, Tanzi RE, Alzheimer’s disease: advances in genetics, molecular, and cellular biology. New York: Springer; 2007: 179–198.Google Scholar
  36. 36.
    Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 2005;8: 1051–1058.CrossRefPubMedGoogle Scholar
  37. 37.
    Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 2007;8: 101–112.CrossRefPubMedGoogle Scholar
  38. 38.
    Davis J, Xu F, Deane R, et al. Early-onset and robust cerebral microvascular accumulation of amyloid β-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid β-protein precursor. J Biol Chem 2004;279: 20296–20306.CrossRefPubMedGoogle Scholar
  39. 39.
    Deane R, Wu Z, Sagare A, et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 2004;43: 333–344.CrossRefPubMedGoogle Scholar
  40. 40.
    Kumar-Singh S, Pirici D, McGowan E, et al. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer’s disease are centered on vessel walls. Am J Pathol 2005;167: 527–543.CrossRefPubMedGoogle Scholar
  41. 41.
    Yan SD, Chen X, Fu J, et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 1996;382: 685–691.CrossRefPubMedGoogle Scholar
  42. 42.
    Giri R, Shen Y, Stins M, et al. β-Amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol Cell Physiol 2000;279: C1772-C1781.PubMedGoogle Scholar
  43. 43.
    Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003;9: 907–913.CrossRefPubMedGoogle Scholar
  44. 44.
    LaRue B, Hogg E, Sagare A, et al. Method for measurement of the blood-brain barrier permeability in the perfused mouse brain: application to amyloid-β peptide in wild type and Alzheimer’s Tg2576 mice. J Neurosci Methods 2004;138: 233–242.CrossRefPubMedGoogle Scholar
  45. 45.
    Donahue JE, Flaherty SL, Johanson CE, et al. RAGE, LRP-1, and amyloid-β protein in Alzheimer’s disease. Acta Neuropathol 2006; 112: 405–415.CrossRefPubMedGoogle Scholar
  46. 46.
    Herring A, Yasin H, Ambrée O, Sachser N, Paulus W, Keyvani K. Environmental enrichment counteracts Alzheimer’s neurovascular dysfunction in TgCRND8 mice. Brain Pathol 2008;18: 32–39.CrossRefPubMedGoogle Scholar
  47. 47.
    Martel CL, Mackic JB, McComb JG, Ghiso J, Zlokovic BV. Blood-brain barrier uptake of the 40 and 42 amino acid sequences of circulating Alzheimer’s amyloid β in guinea pigs. Neurosci Lett 1996;206: 157–160.CrossRefPubMedGoogle Scholar
  48. 48.
    Mackic JB, Bading J, Ghiso J, et al. Circulating amyloid-β peptide crosses the blood-brain barrier in aged monkeys and contributes to Alzheimer’s disease lesions. Vascul Pharmacol 2002;38: 303–313.CrossRefPubMedGoogle Scholar
  49. 49.
    Zlokovic BV, Hyman S, McComb JG, Lipovac MN, Tang G, Davson H. Kinetics of arginine-vasopressin uptake at the blood-brain barrier. Biochim Biophys Acta 1990;1025: 191–198.CrossRefPubMedGoogle Scholar
  50. 50.
    Zlokovic BV, Mackic JB, Djuricic B, Davson H. Kinetic analysis of leucine-enkephalin cellular uptake at the luminal side of the blood-brain barrier of an in situ perfused guinea-pig brain. J Neurochem 1989;53: 1333–1340.CrossRefPubMedGoogle Scholar
  51. 51.
    Zlokovic BV, Begley DJ, Chain-Eliash DG. Blood-brain barrier permeability to leucine-enkephalin, D-alanine2-D-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res 1985;336: 125–132.CrossRefPubMedGoogle Scholar
  52. 52.
    Segal MB, Preston JE, Collis CS, Zlokovic BV. Kinetics and Na independence of amino acid uptake by blood side of perfused sheep choroid plexus. Am J Physiol 1990;258: F1288-F1294.PubMedGoogle Scholar
  53. 53.
    Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer’s amyloid-β (1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 2000;106: 1489–1499.CrossRefPubMedGoogle Scholar
  54. 54.
    Cirrito JR, Deane R, Fagan AM, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-β deposition in an Alzheimer disease mouse model. J Clin Invest 2005;115: 3285–3290.CrossRefPubMedGoogle Scholar
  55. 55.
    Bell RD, Sagare AP, Friedman AE, et al. Transport pathways for clearance of human Alzheimer’s amyloid β-peptide and apoli-poproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 2007;27: 909–918.PubMedGoogle Scholar
  56. 56.
    Monro OR, Mackic JB, Yamada S, et al. Substitution at codon 22 reduces clearance of Alzheimer’s amyloid-β peptide from the cerebrospinal fluid and prevents its transport from the central nervous system into blood. Neurobiol Aging 2002;23: 405–412.CrossRefPubMedGoogle Scholar
  57. 57.
    Van Uden E, Mallory M, Veinbergs I, Alford M, Rockenstein E, Masliah E. Increased extracellular amyloid deposition and neuro-degeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J Neurosci 2002;22: 9298–9304.PubMedGoogle Scholar
  58. 58.
    Tamaki C, Ohtsuki S, Iwatsubo T, et al. Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid β-peptide by the liver. Pharm Res 2006; 23: 1407–1416.CrossRefPubMedGoogle Scholar
  59. 59.
    von Arnim CA, Kinoshita A, Peltan ID, et al. The low density lipoprotein receptor-related protein (LRP) is a novel β-secretase (BACE1) substrate. J Biol Chem 2005;280: 17777–17785.CrossRefGoogle Scholar
  60. 60.
    Sagare A, Deane R, Bell RD, et al. Clearance of amyloid-β by circulating lipoprotein receptors. Nat Med 2007;13: 1029–1031.CrossRefPubMedGoogle Scholar
  61. 61.
    Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 2001;64: 575–611.CrossRefPubMedGoogle Scholar
  62. 62.
    Bailey TL, Rivara CB, Rocher AB, Hof PR. The nature and effects of cortical microvascular pathology in aging and Alzheimer’s disease. Neurol Res 2004;26: 573–578.CrossRefPubMedGoogle Scholar
  63. 63.
    Wu Z, Guo H, Chow N, et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 2005; 11: 959–965.PubMedGoogle Scholar
  64. 64.
    Paris D, Townsend K, Quadros A, et al. Inhibition of angiogenesis by Aβ peptides. Angiogenesis 2004;7: 75–85.CrossRefPubMedGoogle Scholar
  65. 65.
    Paris D, Patel N, DelleDonne A, Quadros A, Smeed R, Mullan M. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci Lett 2004;366: 80–85.CrossRefPubMedGoogle Scholar
  66. 66.
    Deane R, Wu Z, Zlokovic BV. RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood-brain barrier. Stroke 2004;35: 2628–2631.CrossRefPubMedGoogle Scholar
  67. 67.
    Chow N, Bell RD, Deane R, et al. Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer’s phenotype. Proc Natl Acad Sci U S A 2007;104: 823–828.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2008

Authors and Affiliations

  1. 1.Center for Neurodegenerative and Vascular Brain Disorders and Frank P. Smith Laboratory for Neuroscience and Neurosurgical Research, Departments of Neurosurgery and NeurologyUniversity of Rochester Medical SchoolRochester
  2. 2.Rochester

Personalised recommendations