Advertisement

Neurotherapeutics

, Volume 5, Issue 3, pp 421–432 | Cite as

Therapeutics for Alzheimer’s disease based on the metal hypothesis

  • Ashley I. Bush
  • Rudolph E. Tanzi
Review Article

Summary

Alzheimer’s disease is the most common form of dementia in the elderly, and it is characterized by elevated brain iron levels and accumulation of copper and zinc in cerebral β-amyloid deposits (e.g., senile plaques). Both ionic zinc and copper are able to accelerate the aggregation of Aβ, the principle component of β-amyloid deposits. Copper (and iron) can also promote the neurotoxic redox activity of Aβ and induce oxidative cross-linking of the peptide into stable oligomers. Recent reports have documented the release of Aβ together with ionic zinc and copper in cortical glutamatergic synapses after excitation. This, in turn, leads to the formation of Aβ oligomers, which, in turn, modulates long-term potentiation by controlling synaptic levels of the NMDA receptor. The excessive accumulation of Aβ oligomers in the synaptic cleft would then be predicted to adversely affect synaptic neurotransmission. Based on these findings, we have proposed the “Metal Hypothesis of Alzheimer’s Disease,” which stipulates that the neuropathogenic effects of Aβ in Alzheimer’s disease are promoted by (and possibly even dependent on) Aβ-metal interactions. Increasingly sophisticated pharmaceutical approaches are now being implemented to attenuate abnormal Aβ-metal interactions without causing systemic disturbance of essential metals. Small molecules targeting Aβ-metal interactions (e.g., PBT2) are currently advancing through clinical trials and show increasing promise as disease-modifying agents for Alzheimer’s disease based on the “metal hypothesis.”

Key Words

Copper zinc amyloid free radical oxidation PBT2 

References

  1. 1.
    Hardy JA, Higgins GA. Alzheimer disease: the amyloid cascade hypothesis. Science 1992;256: 184–185.PubMedCrossRefGoogle Scholar
  2. 2.
    Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005; 120: 545–555.PubMedCrossRefGoogle Scholar
  3. 3.
    Seubert P, Vigo-Pelfrey C, Esch F, et al. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 1992;359: 325–327.PubMedCrossRefGoogle Scholar
  4. 4.
    Whitson JS, Selkoe DJ, Cotman CW. Amyloid β protein enhances the survival of hippocampal neurons in vitro. Science 1989;243: 1488–1490.PubMedCrossRefGoogle Scholar
  5. 5.
    Whitson JS, Glabe CG, Shintani E, et al. Beta-amyloid protein promotes neuritic branching in hippocampal cultures. Neurosci Lett 1990;110: 319–324.PubMedCrossRefGoogle Scholar
  6. 6.
    Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 1990;250: 279–282.PubMedCrossRefGoogle Scholar
  7. 7.
    Vigo-Pelfrey C, Lee D, Keim P, et al. Characterization of β-amyloid peptide from human cerebrospinal fluid. J. Neurochem 1993; 61: 1965–1968.PubMedCrossRefGoogle Scholar
  8. 8.
    Masters CL, Multhaup G, Simms G, et al. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 1985;4: 2757–2763.PubMedGoogle Scholar
  9. 9.
    Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987;325: 733–736.PubMedCrossRefGoogle Scholar
  10. 10.
    Citron M, Westaway D, Xia W, et al. Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med 1997;3: 67–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Hilbich C, Kisters-Woike B, Reed J, et al. Aggregation and secondary structure of synthetic amyloid β A4 peptides of Alzheimer’s disease. J Mol Biol 1991;218: 149–163.PubMedCrossRefGoogle Scholar
  12. 12.
    Jarrett JT, Berger EP, Lansbury PT, Jr. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 1993;32: 4693–4697.PubMedCrossRefGoogle Scholar
  13. 13.
    McLean C, Cherny R, Fraser F, et al. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s Disease. Annals of Neurology 1999;46: 860–866.PubMedCrossRefGoogle Scholar
  14. 14.
    Wang J, Dickson DW, Trojanowski JQ, et al. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol 1999;158: 328–337.PubMedCrossRefGoogle Scholar
  15. 15.
    Lue LF, Kuo YM, Roher AE, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 1999;155: 853–862.PubMedCrossRefGoogle Scholar
  16. 16.
    Nunomura A, Perry G, Pappolla MA, et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 1999;19: 1959–1964.PubMedGoogle Scholar
  17. 17.
    Nunomura A, Perry G, Pappolla MA, et al. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 2000;59: 1011–1017.PubMedGoogle Scholar
  18. 18.
    Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001;60: 759–767.PubMedGoogle Scholar
  19. 19.
    Bush AI, Pettingell WH, Jr., Paradis MD, et al. Modulation of Aβ adhesiveness and secretase site cleavage by zinc. J Biol Chem 1994;269: 12152–12158.PubMedGoogle Scholar
  20. 20.
    Bush AI, Pettingell WH, Multhaup G, et al. Rapid induction of Alzheimer Aβ amyloid formation by zinc. Science 1994;265: 1464–1467.PubMedCrossRefGoogle Scholar
  21. 21.
    Opazo C, Huang X, Cherny R, et al. Metalloenzyme-like activity of Alzheimer’s disease β-amyloid: Cu-dependent catalytic conversion of dopamine, cholesterol and biological reducing agents to neurotoxic H2O2. J Biol Chem 2002;277: 40302–40308.PubMedCrossRefGoogle Scholar
  22. 22.
    Dong J, Atwood CS, Anderson VE, et al. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 2003;42: 2768–2773.PubMedCrossRefGoogle Scholar
  23. 23.
    Ha C, Ryu J, Park CB. Metal ions differentially influence the aggregation and deposition of Alzheimer’s beta-amyloid on a solid template. Biochemistry 2007;46: 6118–6125.PubMedCrossRefGoogle Scholar
  24. 24.
    Atwood CS, Moir RD, Huang X, et al. Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 1998;273: 12817–12826.PubMedCrossRefGoogle Scholar
  25. 25.
    Atwood CS, Scarpa RC, Huang X, et al. Characterization of copper interactions with Alzheimer Aβ peptides-identification of an attomolar affinity copper binding site on Aβl-42. J Neurochem 2000;75: 1219–1233.PubMedCrossRefGoogle Scholar
  26. 26.
    Huang X, Atwood CS, Moir RD, et al. Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Abeta peptides. J Biol Inorg Chem 2004;9: 954–960.PubMedCrossRefGoogle Scholar
  27. 27.
    Vaughan DW, Peters A. The structure of neuritic plaques in the cerebral cortex of aged rats. J Neuropathol Exp Neurol 1981;40: 472–487.PubMedCrossRefGoogle Scholar
  28. 28.
    Syme CD, Viles JH. Solution (1)H NMR investigation of Zn(2+) and Cd(2+) binding to amyloid-beta peptide (Abeta) of Alzheimer’s disease. Biochim Biophys Acta 2006;1764: 246–256.PubMedGoogle Scholar
  29. 29.
    Danielsson J, Pierattelli R, Banci L, et al. High-resolution NMR studies of the zinc-binding site of the Alzheimer’s amyloid beta-peptide. Febs J 2007;274: 46–59.PubMedCrossRefGoogle Scholar
  30. 30.
    Huang X, Atwood CS, Moir RD, et al. Zinc-induced Alzheimer’s Aβ1-40 aggregation is mediated by conformational factors. J Biol Chem 1997;272: 26464–26470.PubMedCrossRefGoogle Scholar
  31. 31.
    Garai K, Sengupta P, Sahoo B, et al. Selective destabilization of soluble amyloid beta oligomers by divalent metal ions. Biochem Biophys Res Commun 2006;345: 210–215.PubMedCrossRefGoogle Scholar
  32. 32.
    Jun S, Saxena S. The aggregated state of amyloid-beta peptide in vitro depends on Cu2+ ion concentration. Angewandte Chemie (International ed) 2007;46: 3959–3961.CrossRefGoogle Scholar
  33. 33.
    Tougu V, Karafin A, Palumaa P. Binding of zinc(II) and copper(II) to the full-length Alzheimer’s amyloid-beta peptide. J Neurochem 2008;104: 1249–1259.PubMedCrossRefGoogle Scholar
  34. 34.
    Stellato F, Menestrina G, Dalla Serra M, et al. Metal binding in amyloid beta-peptides shows intra- and inter-peptide coordination modes. Eur Biophys J 2006;35: 340–351.PubMedCrossRefGoogle Scholar
  35. 35.
    Curtain C, Ali F, Volitakis I, et al. Alzheimer’s disease amyloid-binds Cu and Zn to generate an allosterically-ordered membrane-penetrating structure containing SOD-like subunits. J Biol Chem 2001;276: 20466–20473.PubMedCrossRefGoogle Scholar
  36. 36.
    Moir RD, Atwood CS, Romano DM, et al. Differential effects of apolipoprotein E isoforms on metal-induced aggregation of Aβ using physiological concentrations. Biochemistry 1999; 38: 4595–4603.PubMedCrossRefGoogle Scholar
  37. 37.
    Cherny RA, Atwood CS, Xilinas ME, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 2001;30: 665–676.PubMedCrossRefGoogle Scholar
  38. 38.
    Hu WP, Chang GL, Chen SJ, et al. Kinetic analysis of beta-amyloid peptide aggregation induced by metal ions based on surface plasmon resonance biosensing. J Neurosci Methods 2006; 154: 190–197.PubMedCrossRefGoogle Scholar
  39. 39.
    Tabner BJ, Turnbull S, El-Agnaf OM, et al. Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radic Biol Med 2002;32: 1076–1083.PubMedCrossRefGoogle Scholar
  40. 40.
    Dikalov SI, Vitek MP, Mason RP. Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical. Free Radic Biol Med 2004;36: 340–347.PubMedCrossRefGoogle Scholar
  41. 41.
    Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem 2005;280: 7377–7387.PubMedCrossRefGoogle Scholar
  42. 42.
    Ciccotosto GD, Tew D, Curtain CC, et al. Enhanced toxicity and cellular binding of a modified amyloid beta peptide with a methionine to valine substitution. J Biol Chem 2004;279: 42528–42534.PubMedCrossRefGoogle Scholar
  43. 43.
    Ali FE, Separovic F, Barrow CJ, et al. Methionine regulates copper/hydrogen peroxide oxidation products of Abeta. J Pept Sci 2005;11: 353–360.PubMedCrossRefGoogle Scholar
  44. 44.
    Barnham KJ, Haeffner F, Ciccotosto GD, et al. Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. Faseb J 2004;18: 1427–1429.PubMedGoogle Scholar
  45. 45.
    Puglielli L, Friedlich AL, Setchell KDR, et al. Cholesterol oxidase mimetic activity of Alzheimer’s Disease β-amyloid. J Clin Investig 2005;115: 2556–2563.PubMedCrossRefGoogle Scholar
  46. 46.
    Haeffner F, Smith DG, Barnham KJ, et al. Model studies of cholesterol and ascorbate oxidation by copper complexes: relevance to Alzheimer’s disease beta-amyloid metallochemistry. J Inorg Biochem 2005;99: 2403–2422.PubMedCrossRefGoogle Scholar
  47. 47.
    Murray IV, Sindoni ME, Axelsen PH. Promotion of oxidative lipid membrane damage by amyloid beta proteins. Biochemistry 2005;44: 12606–12613.PubMedCrossRefGoogle Scholar
  48. 48.
    Smith DP, Smith DG, Curtain CC, et al. Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge. J Biol Chem 2006;281: 15145–15154.PubMedCrossRefGoogle Scholar
  49. 49.
    Murray IV, Liu L, Komatsu H, et al. Membrane-mediated amyloidogenesis and the promotion of oxidative lipid damage by amyloid beta proteins. J Biol Chem 2007;282: 9335–9345.PubMedCrossRefGoogle Scholar
  50. 50.
    da Silva GF, Ming LJ. Alzheimer’s disease related copper(II)-beta-amyloid peptide exhibits phenol monooxygenase and catechol oxidase activities. Angewandte Chemie (International ed) 2005;44: 5501–5504.CrossRefGoogle Scholar
  51. 51.
    da Silva GF, Ming LJ. Metallo-ROS in Alzheimer’s disease: oxidation of neurotransmitters by CuII-beta-amyloid and neuropathology of the disease. Angewandte Chemie (International ed) 2007;46: 3337–3341.CrossRefGoogle Scholar
  52. 52.
    Smith MA, Perry G, Richey PL, et al. Oxidative damage in Alzheimer’s. Nature 1996;382: 120–121.PubMedCrossRefGoogle Scholar
  53. 53.
    Smith MA, Richey Harris PL, Sayre LM, et al. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 1997;17: 2653–2657.PubMedGoogle Scholar
  54. 54.
    Markesbery WR, Lovell MA. Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch Neurol 2007;64: 954–956.PubMedCrossRefGoogle Scholar
  55. 55.
    Huang X, Cuajungco MP, Atwood CS, et al. Cu(II) potentiation of Alzheimer Aβ neurotoxicity: correlation with cell-free hydrogen peroxide production and metal reduction. J Biolog Chem 1999;274: 37111–37116.CrossRefGoogle Scholar
  56. 56.
    Curtain CC, Ali FE, Smith DG, et al. Metal ions, pH and cholesterol regulate the interactions of Alzheimer’s disease amyloid-β peptide with membrane lipid. J Biol Chem 2003;278.Google Scholar
  57. 57.
    Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 2003;23: 5088–5095.PubMedGoogle Scholar
  58. 58.
    Chen K, Kazachkov M, Yu PH. Effect of aldehydes derived from oxidative deamination and oxidative stress on beta-amyloid aggregation; pathological implications to Alzheimer’s disease. J Neural Transm 2007;114: 835–839.PubMedCrossRefGoogle Scholar
  59. 59.
    Ali FE, Leung A, Cherny RA, et al. Dimerisation of N-acetyl-L-tyrosine ethyl ester and Abeta peptides via formation of dityrosine. Free Radic Res 2006;40: 1–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Metodiewa D. Molecular mechanisms of cellular injury produced by neurotoxic amino acids that generate reactive oxygen species. Amino Acids 1998;14: 181–187.PubMedCrossRefGoogle Scholar
  61. 61.
    Maeda J, Ji B, Irie T, et al. Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J Neurosci 2007;27: 10957–10968.PubMedCrossRefGoogle Scholar
  62. 62.
    Atwood CS, Perry G, Zeng H, et al. Copper mediates dityrosine cross-linking of alzheimer’s amyloid-beta. Biochemistry 2004; 43: 560–568.PubMedCrossRefGoogle Scholar
  63. 63.
    Nagano S, Huang X, Moir RD, et al. Peroxidase activity of COX-2 cross-links Abeta and generates Abeta: COX-2 heterooligomers that are increased in Alzheimer’s disease. J Biol Chem 2004;279: 14673–14678.PubMedCrossRefGoogle Scholar
  64. 64.
    Lesne S, Koh MT, Kotilinek L, et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006;440: 352–357.PubMedCrossRefGoogle Scholar
  65. 65.
    Dong J, Canfield JM, Mehta AK, et al. Engineering metal ion coordination to regulate amyloid fibril assembly and toxicity. Proc Natl Acad Sci U S A 2007;104: 13313–13318.PubMedCrossRefGoogle Scholar
  66. 66.
    Lovell MA, Robertson JD, Teesdale WJ, et al. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998; 158: 47–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Lee J-Y, Mook-Jung I, Koh J-Y. Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J Neurosci 1999;19;RC10: 1–5.Google Scholar
  68. 68.
    Suh SW, Jensen KB, Jensen MS, et al. Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res 2000;852: 274–278.PubMedCrossRefGoogle Scholar
  69. 69.
    Friedlich AL, Lee JY, van Groen T, et al. Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer’s disease. J Neurosci 2004;24: 3453–3459.PubMedCrossRefGoogle Scholar
  70. 70.
    Stoltenberg M, Bruhn M, Sondergaard C, et al. Immersion autometallographic tracing of zinc ions in Alzheimer beta-amyloid plaques. Histochem Cell Biol 2005;123: 605–611.PubMedCrossRefGoogle Scholar
  71. 71.
    Miller LM, Wang Q, Telivala TP, et al. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 2006;155: 30–37.PubMedCrossRefGoogle Scholar
  72. 72.
    Stoltenberg M, Bush AI, Bach G, et al. Amyloid plaques arise from zinc-enriched cortical layers in APP/PS1 transgenic mice and are paradoxically enlarged with dietary zinc deficiency. Neuroscience 2007;150: 357–369.PubMedCrossRefGoogle Scholar
  73. 73.
    Grundke-Iqbal I, Fleming J, Tung YC, et al. Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta. Neuropathol (Berl) 1990;81: 105–110.CrossRefGoogle Scholar
  74. 74.
    Bouras C, Giannakopoulos P, Good PF, et al. A laser microprobe mass analysis of brain aluminum and iron in dementia pugilistica: comparison with Alzheimer’s disease. Eur Neurol 1997;38: 53–58.PubMedCrossRefGoogle Scholar
  75. 75.
    Morris CM, Kerwin JM, Edwardson JA. Non-haem iron histochemistry of the normal and Alzheimer’s disease hippocampus. Neurodegeneration 1994;3: 267–275.PubMedGoogle Scholar
  76. 76.
    LeVine SM. Iron deposits in multiple sclerosis and Alzheimer’s disease brains. Brain Res 1997;760: 298–303.PubMedCrossRefGoogle Scholar
  77. 77.
    Lee J-Y, Cole TB, Palmiter RD, et al. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc Natl Acad Sci U S A 2002; 99: 7705–7710.PubMedCrossRefGoogle Scholar
  78. 78.
    Bush AI, Tanzi RE. The galvanization of beta-amyloid in Alzheimer’s disease. Proc Natl Acad Sci U S A 2002;99: 7317–7319.PubMedCrossRefGoogle Scholar
  79. 79.
    Lee J-Y, Kim J-H, Hong SH, et al. Estrogen decreases zinc transporter 3 expression and synaptic vesicle zinc levels in mouse brain. J Biol Chem 2004;279: 8602–8607.PubMedCrossRefGoogle Scholar
  80. 80.
    Cherny RA, Legg JT, McLean CA, et al. Aqueous dissolution of Alzheimer’s disease Aβ amyloid deposits by biometal depletion. J Biol Chem 1999;274: 23223–23228.PubMedCrossRefGoogle Scholar
  81. 81.
    Frederickson CJ. Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 1989;31: 145–328.PubMedCrossRefGoogle Scholar
  82. 82.
    Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci 2005;6: 449–462.PubMedCrossRefGoogle Scholar
  83. 83.
    Rogers J, Randall J, Cahill C, et al. An iron-responsive element type II in the 5′ untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 2002;277: 45518–45528.PubMedCrossRefGoogle Scholar
  84. 84.
    Son M, Puttaparthi K, Kawamata H, et al. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology. Proc Natl Acad Sci U S A 2007;104: 6072–6077.PubMedCrossRefGoogle Scholar
  85. 85.
    Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major con-elate of cognitive impairment. Ann Neurol 1991;30: 572–580.PubMedCrossRefGoogle Scholar
  86. 86.
    Frederickson CJ, Giblin LJ, 3rd, Balaji RV, et al. Synaptic release of zinc from brain slices: factors governing release, imaging, and accurate calculation of concentration. J Neurosci Meth 2006;154: 19–29.CrossRefGoogle Scholar
  87. 87.
    Tanzi RE. The synaptic Abeta hypothesis of Alzheimer disease. Nat Neurosci, 2005;8: 977–979.PubMedCrossRefGoogle Scholar
  88. 88.
    Schlief ML, Craig AM, Gitlin JD. NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci 2005;25: 239–246.PubMedCrossRefGoogle Scholar
  89. 89.
    Schlief ML, West T, Craig AM, et al. Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc Natl Acad Sci U S A 2006;103: 14919–14924.PubMedCrossRefGoogle Scholar
  90. 90.
    El Meskini R, Crabtree KL, Cline LB, et al. ATP7A (Menkes protein) functions in axonal targeting and synaptogenesis. Mol Cell Neurosci 2007;34: 409–421.PubMedCrossRefGoogle Scholar
  91. 91.
    Niciu MJ, Ma XM, El Meskini R, et al. Altered ATP7A expression and other compensatory responses in a murine model of Menkes disease. Neurobiol Dis 2007;27: 278–291.PubMedCrossRefGoogle Scholar
  92. 92.
    Uchida Y, Gomi F, Masumizu T, et al. Growth inhibitory factor prevents neurite extension and the death of cortical neurons caused by high oxygen exposure through hydroxyl radical scavenging. J Biol Chem 2002;277: 32353–32359.PubMedCrossRefGoogle Scholar
  93. 93.
    Uchida Y, Takio K, Titani K, et al. The growth-inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68-amino acid metallothionein-like protein. Neuron 1991;7: 337–347.PubMedCrossRefGoogle Scholar
  94. 94.
    Adlard PA, Bush AI. Metals and Alzheimer’s disease. J Alzheimer’s Dis 2006;10: 145–163.Google Scholar
  95. 95.
    Religa D, Strozyk D, Cherny RA, et al. Elevated cortical zinc in Alzheimer disease. Neurology 2006;67: 69–75PubMedCrossRefGoogle Scholar
  96. 96.
    Hardy PA, Gash D, Yokel R, et al. Correlation of R2 with total iron concentration in the brains of rhesus monkeys. J Magn Reson Imaging 2005;21: 118–127.PubMedCrossRefGoogle Scholar
  97. 97.
    Suh JH, Moreau R, Heath SH, et al. Dietary supplementation with (R)-alpha-lipoic acid reverses the age-related accumulation of iron and depletion of antioxidants in the rat cerebral cortex. Redox Rep 2005;10: 52–60.PubMedCrossRefGoogle Scholar
  98. 98.
    Chinnery PF, Crompton DE, Birchall D, et al. Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 2007;130: 110–119.PubMedCrossRefGoogle Scholar
  99. 99.
    Mantovan MC, Martinuzzi A, Squarzanti F, et al. Exploring mental status in Friedreich’s ataxia: a combined neuropsychological, behavioral and neuroimaging study. Eur J Neurol 2006;13: 827–835.PubMedCrossRefGoogle Scholar
  100. 100.
    Zecca L, Youdim MB, Riederer P, et al. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004;5: 863–873.PubMedCrossRefGoogle Scholar
  101. 101.
    Melov S, Adlard PA, Morten K, et al. Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS ONE 2007;2: e536.PubMedCrossRefGoogle Scholar
  102. 102.
    Bayer TA, Schafer S, Simons A, et al. Dietary Cu stabilizes brain Superoxide dismutase 1 activity and reduces amyloid A {beta} production in APP23 transgenic mice. Proc Natl Acad Sci U S A 2003;100: 14187–14192.PubMedCrossRefGoogle Scholar
  103. 103.
    Phinney AL, Drisaldi B, Schmidt SD, et al. In vivo reduction of amyloid-beta by a mutant copper transporter. Proc Natl Acad Sci U S A 2003;100: 14193–14198.PubMedCrossRefGoogle Scholar
  104. 104.
    Morris MC, Evans DA, Tangney CC, et al. Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Arch Neurol 2006;63: 1085–1088.PubMedCrossRefGoogle Scholar
  105. 105.
    Sparks DL, Schreurs BG. Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2003; 100: 11065–11069.PubMedCrossRefGoogle Scholar
  106. 106.
    Sparks DL, Friedland R, Petanceska S, et al. Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology. J Nutr Health Aging 2006;10: 247–254.PubMedGoogle Scholar
  107. 107.
    Maynard CJ, Cappai R, Volitakis I, et al. Overexpression of Alzheimer’s disease β-amyloid opposes the age-dependent elevations of brain copper and iron levels. J Biol Chem 2002;277: 44670–44676.PubMedCrossRefGoogle Scholar
  108. 108.
    Bellingham SA, Ciccotosto GD, Needham BE, et al. Gene knockout of amyloid precursor protein and amyloid precursor-like protein-2 increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts. J Neurochem 2004;91: 423–428.PubMedCrossRefGoogle Scholar
  109. 109.
    Bellingham SA, Lahiri DK, Maloney B, et al. Copper depletion down-regulates expression of the Alzheimer’s disease amyloid-beta precursor protein gene. J Biol Chem 2004;279: 20378–20386.PubMedCrossRefGoogle Scholar
  110. 110.
    Armendariz AD, Gonzalez M, Loguinov AV, et al. Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App. Physiol Genomics 2004;20: 45–54.PubMedCrossRefGoogle Scholar
  111. 111.
    Angeletti B, Waldron KJ, Freeman KB, et al. BACE1 cytoplasmic domain interacts with the copper chaperone for Superoxide dismutase-1 and binds copper. J Biol Chem 2005;280: 17930–17937.PubMedCrossRefGoogle Scholar
  112. 112.
    Hoke DE, Tan JL, Ilaya NT, et al. In vitro gamma-secretase cleavage of the Alzheimer’s amyloid precursor protein correlates to a subset of presenilin complexes and is inhibited by zinc. Febs J 2005;272: 5544–5557.PubMedCrossRefGoogle Scholar
  113. 113.
    Borchardt T, Camakaris J, Cappai R, et al. Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochem J 1999;344 Pt 2: 461–467.PubMedCrossRefGoogle Scholar
  114. 114.
    Cater M, McInnes K, Li Q-X, et al. Intracellular copper deficiency increases amyloid-beta secretion by diverse mechanisms. J Biochem 2008;412: 141–152.CrossRefGoogle Scholar
  115. 115.
    Strozyk D, Launer LJ, Adlard PA, et al. Zinc and copper modulate Alzheimer Abeta levels in human cerebrospinal fluid. Neurobiol Aging 2008;(in press).Google Scholar
  116. 116.
    Crapper-McLachlan DR, Dalton AJ, Kruck TPA, et al. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 1991;337: 1304–1308.PubMedCrossRefGoogle Scholar
  117. 117.
    Squitti R, Rossini PM, Cassetta E, et al. D-penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur J Clin Invest 2002;32: 51–59.PubMedCrossRefGoogle Scholar
  118. 118.
    Moret V, Laras Y, Pietrancosta N, et al. l,l′-Xylyl bis-1,4,8,11-tetraaza cyclotetradecane: a new potential copper chelator agent for neuroprotection in Alzheimer’s disease. Its comparative effects with clioquinol on rat brain copper distribution. Bioorg Med Chem Lett 2006;16: 3298–3301.PubMedCrossRefGoogle Scholar
  119. 119.
    Lee JY, Friedman JE, Angel I, et al. The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human beta-amyloid precursor protein transgenic mice. Neurobiol Aging 2004;25: 1315–1321.PubMedCrossRefGoogle Scholar
  120. 120.
    Opazo C, Luza S, Villemagne VL, et al. Radioiodinated clioquinol as a biomarker for β-amyloid:Zn2+ complexes in Alzheimer’s disease. Aging Cell 2006;5: 69–79.PubMedCrossRefGoogle Scholar
  121. 121.
    Ritchie CW, Bush AI, Mackinnon A, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer’s disease: a pilot phase 2 clinical trial. Arch Neurol 2003;60: 1685–1691.PubMedCrossRefGoogle Scholar
  122. 122.
    White AR, Du T, Laughton KM, et al. Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity. J Biol Chem 2006; 281: 17670–17680.PubMedCrossRefGoogle Scholar
  123. 123.
    Kaur D, Yantiri F, Kumar J, et al. Genetic or pharmacological iron chelation prevents MPTP-Induced neurotoxicity in vivo: a novel therapy for Parkinson’s Disease. Neuron 2003;37: 923–933.CrossRefGoogle Scholar
  124. 124.
    Nguyen T, Hamby A, Massa SM. Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 2005;102: 11840–11845.PubMedCrossRefGoogle Scholar
  125. 125.
    Yogev-Falach M, Bar-Am O, Amit T, et al. A multifunctional, neuroprotective drug, ladostigil (TV3326), regulates holo-APP translation and processing. Faseb J 2006;20: 2177–2179.PubMedCrossRefGoogle Scholar
  126. 126.
    Avramovich-Tirosh Y, Amit T, Bar-Am O, et al. Therapeutic targets and potential of the novel brain-permeable multifunctional iron chelator-monoamine oxidase inhibitor drug, M-30, for the treatment of Alzheimer’s disease. J Neurochem 2007;100: 490–502.PubMedCrossRefGoogle Scholar
  127. 127.
    Avramovich-Tirosh Y, Reznichenko L, Mit T, et al. Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron-chelating-antioxidants, M-30 and green tea polyphenol, EGCG. Curr Alzheimer Res 2007;4: 403–411.PubMedCrossRefGoogle Scholar
  128. 128.
    Reznichenko L, Amit T, Zheng H, et al. Reduction of iron-regulated amyloid precursor protein and beta-amyloid peptide by (-)-epigallocatechin-3-gallate in cell cultures: implications for iron chelation in Alzheimer’s disease. J Neurochem 2006;97: 527–536.PubMedCrossRefGoogle Scholar
  129. 129.
    Siddiq A, Ayoub IA, Chavez JC, et al. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J Biol Chem 2005;280: 41732–41743.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2008

Authors and Affiliations

  1. 1.The Mental Health Research InstituteParkvilleAustralia
  2. 2.Department of PathologyUniversity of MelbourneParkvilleAustralia
  3. 3.Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Department of NeurologyMassachusetts General HospitalCharlestown

Personalised recommendations