Neurotherapeutics

, Volume 5, Issue 2, pp 345–361 | Cite as

Noninvasive brain stimulation for Parkinson’s disease and dystonia

  • Allan D. Wu
  • Felipe Fregni
  • David K. Simon
  • Choi Deblieck
  • Alvaro Pascual-Leone
Noninvasive DBS

Summary

Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are promising noninvasive cortical stimulation methods for adjunctive treatment of movement disorders. They avoid surgical risks and provide theoretical advantages of specific neural circuit neuromodulation. Neuromodulatory effects depend on extrinsic stimulation factors (cortical target, frequency, intensity, duration, number of sessions), intrinsic patient factors (disease process, individual variability and symptoms, state of medication treatment), and outcome measures. Most studies to date have shown beneficial effects of rTMS or tDCS on clinical symptoms in Parkinson’s disease (PD) and support the notion of spatial specificity to the effects on motor and nonmotor symptoms. Stimulation parameters have varied widely, however, and some studies are poorly controlled. Studies of rTMS or tDCS in dystonia have provided abundant data on physiology, but few on clinical effects. Multiple mechanisms likely contribute to the clinical effects of rTMS and tDCS in movement disorders, including normalization of cortical excitability, rebalancing of distributed neural network activity, and induction of dopamine release. It remains unclear how to individually adjust rTMS or tDCS factors for the most beneficial effects on symptoms of PD or dystonia. Nonetheless, the noninvasive nature, minimal side effects, positive effects in preliminary clinical studies, and increasing evidence for rational mechanisms make rTMS and tDCS attractive for ongoing investigation.

Key Words

Parkinson’s disease dystonia transcranial magnetic stimulation transcranial direct current stimulation cortical stimulation 

References

  1. 1.
    Mink JW. The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol 2003; 60: 1365–1368.PubMedCrossRefGoogle Scholar
  2. 2.
    Pahwa R, Factor SA, Lyons KE, et al. Practice Parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006;66: 983–995.PubMedCrossRefGoogle Scholar
  3. 3.
    Jankovic J. Treatment of dystonia. Lancet Neurol 2006;5: 864–872.PubMedCrossRefGoogle Scholar
  4. 4.
    Weintraub D, Moberg PJ, Duda JE, Katz IR, Stern MB. Effect of psychiatric and other nonmotor symptoms on disability in Parkinson’s disease. J Am Geriatr Soc 2004;52: 784–788.PubMedCrossRefGoogle Scholar
  5. 5.
    Skidmore FM, Rodriguez RL, Fernandez HH, Goodman WK, Foote KD, Okun MS. Lessons learned in deep brain stimulation for movement and neuropsychiatric disorders. CNS Spectr 2006; 11: 521–536.PubMedGoogle Scholar
  6. 6.
    Albanese A, Barnes MP, Bhatia KP, et al. A systematic review on the diagnosis and treatment of primary (idiopathic) dystonia and dystonia plus syndromes: report of an EFNS/MDS-ES Task Force. Eur J Neurol 2006;13: 433–444.PubMedCrossRefGoogle Scholar
  7. 7.
    Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng 2007;9: 527–565.PubMedCrossRefGoogle Scholar
  8. 8.
    Quartarone A, Siebner HR, Rothwell JC. Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci 2006;29: 192–199.PubMedCrossRefGoogle Scholar
  9. 9.
    Brasil-Neto JP, Cohen LG, Panizza M, Nilsson J, Roth BJ, Hallett M. Optimal focal transcranial magnetic activation of the human motor cortex: effects of coil orientation, shape of the induced current pulse, and stimulus intensity. J Clin Neurophysiol 1992;9: 132–136.PubMedCrossRefGoogle Scholar
  10. 10.
    Romero JR, Anschel D, Sparing R, Gangitano M, Pascual-Leone A. Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol 2002;113: 101–107.PubMedCrossRefGoogle Scholar
  11. 11.
    Peinemann A, Reimer B, Loer C, et al. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol 2004;115: 1519–1526.PubMedCrossRefGoogle Scholar
  12. 12.
    Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W. Modulation of cortical excitability by weak direct current stimulation: technical, safety and functional aspects. Suppl Clin Neurophysiol 2003;56: 255–276.PubMedCrossRefGoogle Scholar
  13. 13.
    Helmich RC, Siebner HR, Bakker M, Münchau A, Bloem BR. Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson’s disease. J Neurol Sci 2006; 248: 84–96.PubMedCrossRefGoogle Scholar
  14. 14.
    Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994;117: 847–858.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen R, Classen J, Gerloff C, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997;48: 1398–1403.PubMedGoogle Scholar
  16. 16.
    Touge T, Gerschlager W, Brown P, Rothwell JC. Are the aftereffects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol 2001;112: 2138–2145.PubMedCrossRefGoogle Scholar
  17. 17.
    Fitzgerald PB, Brown TL, Daskalakis ZJ, Chen R, Kulkarni J. Intensity-dependent effects of 1 Hz rTMS on human corticospinal excitability. Clin Neurophysiol 2002;113: 1136–1141.PubMedCrossRefGoogle Scholar
  18. 18.
    Antal A, Nitsche MA, Paulus W. External modulation of visual perception in humans. Neuroreport 2001;12: 3553–3555.PubMedCrossRefGoogle Scholar
  19. 19.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000;527: 633–639.PubMedCrossRefGoogle Scholar
  20. 20.
    Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001;57: 1899–1901.PubMedGoogle Scholar
  21. 21.
    Wang H, Wang X, Scheich H. LTD and LTP induced by transcranial magnetic stimulation in auditory cortex. Neuroreport 1996;7: 521–525.PubMedCrossRefGoogle Scholar
  22. 22.
    Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 2002;543: 699–708.PubMedCrossRefGoogle Scholar
  23. 23.
    Baumer T, Demiralay C, Hidding U, et al. Abnormal plasticity of the sensorimotor cortex to slow repetitive transcranial magnetic stimulation in patients with writer’s cramp. Mov Disord 2007;22: 81–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Siebner HR, Filipovic SR, Rowe JB, et al. Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain 2003;126: 2710–2725.PubMedCrossRefGoogle Scholar
  25. 25.
    Buhmann C, Gorsler A, Bäumer T, et al. Abnormal excitability of premotor—motor connections in de novo Parkinson’s disease. Brain 2004;127: 2732–2746.PubMedCrossRefGoogle Scholar
  26. 26.
    Lomarev MP, Kanchana S, Bara-Jimenez W, Iyer M, Wassermann EM, Hallett M. Placebo-controlled study of rTMS for the treatment of Parkinson’s disease. Mov Disord 2006;21: 325–331.PubMedCrossRefGoogle Scholar
  27. 27.
    Khedr EM, Farweez HM, Islam H. Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur J Neurol 2003;10: 567–572.PubMedCrossRefGoogle Scholar
  28. 28.
    Fregni F, Ono CR, Santos CM, et al. Effects of antidepressant treatment with rTMS and fluoxetine on brain perfusion in PD. Neurology 2006;66: 1629–1637.PubMedCrossRefGoogle Scholar
  29. 29.
    Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res 2000;133: 425–430.PubMedCrossRefGoogle Scholar
  30. 30.
    Kleim JA, Chan S, Ringle E, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 2006;9: 735–737.PubMedCrossRefGoogle Scholar
  31. 31.
    Gilio F, Currà A, Inghilleri M, Lorenzano C, Manfredi M, Berardelli A. Repetitive magnetic stimulation of cortical motor areas in Parkinson’s disease: implications for the pathophysiology of cortical function. Mov Disord 2002;17: 467–473.PubMedCrossRefGoogle Scholar
  32. 32.
    Fierro B, Brighina F, D’Amelio M, et al. Motor intracortical inhibition in PD: L-DOPA modulation of high-frequency rTMS effects. Exp Brain Res 2008;184: 521–528.PubMedCrossRefGoogle Scholar
  33. 33.
    Gilio F, Currà A, Lorenzano C, Modugno N, Manfredi M, Berardelli A. Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia. Ann Neurol 2000;48: 20–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology: perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 2007;3: 383–393.PubMedCrossRefGoogle Scholar
  35. 35.
    Hallett M. Transcranial magnetic stimulation: a primer. Neuron 2007;55: 187–199.PubMedCrossRefGoogle Scholar
  36. 36.
    Ziemann U. TMS and drugs. Clin Neurophysiol 2004;115: 1717–1729.PubMedCrossRefGoogle Scholar
  37. 37.
    Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J. Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 1999;517: 591–597.PubMedCrossRefGoogle Scholar
  38. 38.
    Di Lazzaro V, Oliviero A, Meglio M, et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 2000; 111: 794–799.PubMedCrossRefGoogle Scholar
  39. 39.
    Paus T, Castro-Alamancos MA, Petrides M. Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci 2001;14: 1405–1411.PubMedCrossRefGoogle Scholar
  40. 40.
    Lang N, Siebner HR, Ward NS, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 2005;22: 495–504.PubMedCrossRefGoogle Scholar
  41. 41.
    van Eimeren T, Siebner HR. An update on functional neuroimaging of parkinsonism and dystonia. Curr Opin Neurol 2006;19: 412–419.PubMedCrossRefGoogle Scholar
  42. 42.
    Siebner HR, Peller M, Willoch F, et al. Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology 2000;54: 956–963.PubMedGoogle Scholar
  43. 43.
    Rounis E, Lee L, Siebner HR, et al. Frequency specific changes in regional cerebral blood flow and motor system connectivity following rTMS to the primary motor cortex. Neuroimage 2005; 26: 164–176.PubMedCrossRefGoogle Scholar
  44. 44.
    Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 2001;21: RC157.PubMedGoogle Scholar
  45. 45.
    Strafella AP, Paus T, Fraraccio M, Dagher A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 2003;126: 2609–2615.PubMedCrossRefGoogle Scholar
  46. 46.
    Koch G, Brusa L, Caltagirone C, et al. rTMS of supplementary motor area modulates therapy-induced dyskinesias in Parkinson disease. Neurology 2005;65: 623–625.PubMedCrossRefGoogle Scholar
  47. 47.
    Fregni F, Boggio PS, Bermpohl F, et al. Immediate placebo effect in Parkinson’s disease: is the subjective relief accompanied by objective improvement? Eur Neurol 2006;56: 222–229.PubMedCrossRefGoogle Scholar
  48. 48.
    de la Fuente-Fernandez R. Uncovering the hidden placebo effect in deep-brain stimulation for Parkinson’s disease. Parkinsonism Relat Disord 2004;10: 125–127.PubMedCrossRefGoogle Scholar
  49. 49.
    Loo CK, Taylor JL, Gandevia SC, McDarmont BN, Mitchell PB, Sachdev PS. Transcranial magnetic stimulation (TMS) in controlled treatment studies: are some “sham” forms active? Biol Psychiatry 2000;47: 325–331.PubMedCrossRefGoogle Scholar
  50. 50.
    Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 2006; 117: 845–850.PubMedCrossRefGoogle Scholar
  51. 51.
    Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 1998;108: 1–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Belmaker B, Fitzgerald P, George MS, et al. Managing the risks of repetitive transcranial stimulation. CNS Spectr 2003;8: 489.PubMedGoogle Scholar
  53. 53.
    Machii K, Cohen D, Ramos-Estebanez C, Pascual-Leone A. Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin Neurophysiol 2006;117: 455–471.PubMedCrossRefGoogle Scholar
  54. 54.
    Boylan LS, Pullman SL, Lisanby SH, Spicknall KE, Sackeim HA. Repetitive transcranial magnetic stimulation to SMA worsens complex movements in Parkinson’s disease. Clin Neurophysiol 2001;112: 259–264.PubMedCrossRefGoogle Scholar
  55. 55.
    Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005; 45: 201–206.PubMedCrossRefGoogle Scholar
  56. 56.
    Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 2004;318: 121–134.PubMedCrossRefGoogle Scholar
  57. 57.
    Lefaucheur JP. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol 2005;116: 244–253.PubMedCrossRefGoogle Scholar
  58. 58.
    Grafton ST. Contributions of functional imaging to understanding parkinsonian symptoms. Curr Opin Neurobiol 2004;14: 715–719.PubMedCrossRefGoogle Scholar
  59. 59.
    Strafella AP, Ko JH, Grant J, Fraraccio M, Monchi O. Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C]raclopride PET study. Eur J Neurosci 2005;22: 2946–2952.PubMedCrossRefGoogle Scholar
  60. 60.
    Strafella AP, Ko JH, Monchi O. Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. Neuroimage 2006;31: 1666–1672.PubMedCrossRefGoogle Scholar
  61. 61.
    Shimamoto H, Takasaki K, Shigemori M, Imaizumi T, Ayabe M, Shoji H. Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson’s disease. J Neurol 2001;248 Suppl 3: III48-III52.PubMedGoogle Scholar
  62. 62.
    Parkinson Study Group. Cerebrospinal fluid homovanillic acid in the DATATOP study on Parkinson’s disease. Arch Neurol 1995; 52: 237–245.Google Scholar
  63. 63.
    Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, Foly N, Hamdy A. Dopamine levels after repetitive transcranial magnetic stimulation of motor cortex in patients with Parkinson’s disease: preliminary results. Mov Disord 2007;22: 1046–1050.PubMedCrossRefGoogle Scholar
  64. 64.
    Haslinger B, Erhard P, Kampfe N, et al. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 2001;124: 558–570.PubMedCrossRefGoogle Scholar
  65. 65.
    Sabatini U, Boulanouar K, Fabre N, et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 2000;123: 394–403.PubMedCrossRefGoogle Scholar
  66. 66.
    Berardelli A, Rothwell JC, Thompson PD, Hallett M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain 2001;124: 2131–2146.PubMedCrossRefGoogle Scholar
  67. 67.
    Grafton ST, Turner RS, Desmurget M, et al. Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease. Neurology 2006;66: 1192–1199.PubMedCrossRefGoogle Scholar
  68. 68.
    Cantello R, Gianelli M, Bettucci D, Civardi C, De Angelis MS, Mutani R. Parkinson’s disease rigidity: magnetic motor evoked potentials in a small hand muscle. Neurology 1991;41: 1449–1456.PubMedGoogle Scholar
  69. 69.
    Valls-Solé J, Pascual-Leone A, Brasil-Neto JP, Cammarota A, McShane L, Hallett M. Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease. Neurology 1994;44: 735–741.PubMedGoogle Scholar
  70. 70.
    Chen R, Kumar S, Garg RR, Lang AE. Impairment of motor cortex activation and deactivation in Parkinson’s disease. Clin Neurophysiol 2001;112: 600–607.PubMedCrossRefGoogle Scholar
  71. 71.
    Wu AD, Petzinger GM, Lin CH, Kung M, Fisher B. Asymmetric corticomotor excitability correlations in early Parkinson’s disease. Mov Disord 2007;22: 1587–1593.PubMedCrossRefGoogle Scholar
  72. 72.
    Priori A, Berardelli A, Inghilleri M, Accomero N, Manfredi M. Motor cortical inhibition and the dopaminergic system: pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson’s disease and drug-induced parkinsonism. Brain 1994;117: 317–323.PubMedCrossRefGoogle Scholar
  73. 73.
    Chen R, Garg RR, Lozano AM, Lang AE. Effects of internal globus pallidus stimulation on motor cortex excitability. Neurology 2001;56: 716–723.PubMedGoogle Scholar
  74. 74.
    Ellaway PH, Davey NJ, Maskill DW, Dick JP. The relation between bradykinesia and excitability of the motor cortex assessed using transcranial magnetic stimulation in normal and parkinsonian subjects. Electroencephalogr Clin Neurophysiol 1995;97: 169–178.PubMedCrossRefGoogle Scholar
  75. 75.
    Málly J, Farkas R, Tóthfalusi L, Stone TW. Long-term follow-up study with repetitive transcranial magnetic stimulation (rTMS) in Parkinson’s disease. Brain Res Bull 2004;64: 259–263.PubMedCrossRefGoogle Scholar
  76. 76.
    Dragaševic N, Potrebić A, Damjanović A, Stefanova E, Kostić VS. Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic stimulation in depressed patients with Parkinson’s disease: an open study. Mov Disord 2002;17: 528–532.PubMedCrossRefGoogle Scholar
  77. 77.
    Okabe S, Hanajima R, Ohnishi T, et al. Functional connectivity revealed by single-photon emission computed tomography (SPECT) during repetitive transcranial magnetic stimulation (rTMS) of the motor cortex. Clin Neurophysiol 2003; 114: 450–457.PubMedCrossRefGoogle Scholar
  78. 78.
    Fregni F, Santos CM, Myczkowski ML, et al. Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 2004;75: 1171–1174.PubMedCrossRefGoogle Scholar
  79. 79.
    Epstein CM, Evatt ML, Funk A, et al. An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson’s disease. Clin Neurophysiol 2007;118: 2189–2194.PubMedCrossRefGoogle Scholar
  80. 80.
    Brusa L, Versace V, Koch G, et al. Low frequency rTMS of the SMA transiently ameliorates peak-dose LID in Parkinson’s disease. Clin Neurophysiol 2006;117: 1917–1921.PubMedCrossRefGoogle Scholar
  81. 81.
    Tergau F, Wassermann EM, Paulus W, Ziemann U. Lack of clinical improvement in patients with Parkinson’s disease after low and high frequency repetitive transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol Suppl 1999;51: 281–288.PubMedGoogle Scholar
  82. 82.
    Okabe S, Ugawa Y, Kanazawa I. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Mov Disord 2003;18: 382–388.PubMedCrossRefGoogle Scholar
  83. 83.
    Mir P, Matsunaga K, Gilio F, Quinn NP, Siebner HR, Rothwell JC. Dopaminergic drugs restore facilitatory premotor—motor interactions in Parkinson disease. Neurology 2005;64: 1906–1912.PubMedCrossRefGoogle Scholar
  84. 84.
    Fregni F, Simon DK, Wu A, Pascual-Leone A. Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J Neurol Neurosurg Psychiatry 2005;76: 1614–1623.PubMedCrossRefGoogle Scholar
  85. 85.
    Pascual-Leone A, Valls-Solé J, Brasil-Neto JP, Cammarota A, Grafman J, Hallett M. Akinesia in Parkinson’s disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 1994;44: 892–898.PubMedGoogle Scholar
  86. 86.
    Ghabra MB, Hallett M, Wassermann EM. Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology 1999;52: 768–770.PubMedGoogle Scholar
  87. 87.
    Siebner HR. Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD [Comment on: Neurology 1999;52:768-770]. Neurology 2000;54: 272; author reply 273.PubMedGoogle Scholar
  88. 88.
    Siebner HR, Mentschel C, Auer C, Lehner C, Conrad B. Repetitive transcranial magnetic stimulation causes a short-term increase in the duration of the cortical silent period in patients with Parkinson’s disease. Neurosci Lett 2000;284: 147–150.PubMedCrossRefGoogle Scholar
  89. 89.
    Siebner HR, Rossmeier C, Mentschel C, Peinemann A, Conrad B. Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson’s disease. J Neurol Sci 2000; 178: 91–94.PubMedCrossRefGoogle Scholar
  90. 90.
    Siebner HR, Mentschel C, Auer C, Conrad B. Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson’s disease. Neuroreport 1999;10: 589–594.PubMedCrossRefGoogle Scholar
  91. 91.
    Lefaucheur JP, Drouot X, Von Raison F, Ménard-Lefaucheur I, Cesaro P, Nguyen JP. Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clin Neurophysiol 2004;115: 2530–2541.PubMedCrossRefGoogle Scholar
  92. 92.
    Börnke C, Schulte T, Przuntek H, Müller T. Clinical effects of repetitive transcranial magnetic stimulation versus acute levodopa challenge in Parkinson’s disease. J Neural Transm Suppl 2004:61–67.Google Scholar
  93. 93.
    Khedr EM, Rothwell JC, Shawky OA, Ahmed MA, Hamdy A. Effect of daily repetitive transcranial magnetic stimulation on motor performance in Parkinson’s disease. Mov Disord 2006; 21: 2201–2205.PubMedCrossRefGoogle Scholar
  94. 94.
    Ikeguchi M, Touge T, Nishiyama Y, Takeuchi H, Kuriyama S, Ohkawa M. Effects of successive repetitive transcranial magnetic stimulation on motor performances and brain perfusion in idiopathic Parkinson’s disease. J Neurol Sci 2003;209: 41–46.PubMedCrossRefGoogle Scholar
  95. 95.
    Shimamoto H, Morimitsu H, Sugita S, Nakahara K, Shigemori M. Therapeutic effect of repetitive transcranial magnetic stimulation in Parkinson’s disease. Rinsho Shinkeigaku 1999;39: 1264–1267.PubMedGoogle Scholar
  96. 96.
    del Olmo MF, Bello O, Cudeiro J. Transcranial magnetic stimulation over dorsolateral prefrontal cortex in Parkinson’s disease. Clin Neurophysiol 2007;118: 131–139.PubMedCrossRefGoogle Scholar
  97. 97.
    Dias AE, Barbosa ER, Coracini K, Maia F, Marcolin MA, Fregni F. Effects of repetitive transcranial magnetic stimulation on voice and speech in Parkinson’s disease. Acta Neurol Scand 2006;113: 92–99.PubMedCrossRefGoogle Scholar
  98. 98.
    Cardoso EF, Fregni F, Martins Maia F, et al. rTMS treatment for depression in Parkinson’s disease increases BOLD responses in the left prefrontal cortex. Int J Neuropsychopharmacol 2007:1-11.Google Scholar
  99. 99.
    Turner RS, Grafton ST, McIntosh AR, DeLong MR, Hoffman JM. The functional anatomy of parkinsonian bradykinesia. Neuroimage 2003;19: 163–179.PubMedCrossRefGoogle Scholar
  100. 100.
    Brooks DJ, Piccini P, Turjanski N, Samuel M. Neuroimaging of dyskinesia. Ann Neurol 2000;47: S154-S158; discussion S158-S159.PubMedGoogle Scholar
  101. 101.
    Rascol O, Sabatini U, Brefel C, et al. Cortical motor overactivation in parkinsonian patients with L-dopa-induced peak-dose dyskinesia. Brain 1998;121: 527–533.PubMedCrossRefGoogle Scholar
  102. 102.
    Fregni F, Boggio PS, Santos MC, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 2006;21: 1693–1702.PubMedCrossRefGoogle Scholar
  103. 103.
    Nitsche MA, Seeber A, Frommann K, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol 2005;568: 291–303.PubMedCrossRefGoogle Scholar
  104. 104.
    Boggio PS, Ferrucci R, Rigonatti SP, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 2006;249: 31–38.PubMedCrossRefGoogle Scholar
  105. 105.
    Fahn S, Bressman SB, Marsden CD. Classification of dystonia. Adv Neurol 1998;78: 1–10.PubMedGoogle Scholar
  106. 106.
    Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD. The pathophysiology of primary dystonia. Brain 1998;121: 1195–1212.PubMedCrossRefGoogle Scholar
  107. 107.
    Hallett M. Pathophysiology of dystonia. J Neural Transm Suppl 2006:485–488.Google Scholar
  108. 108.
    Ceballos-Baumann AO, Brooks DJ. Basal ganglia function and dysfunction revealed by PET activation studies. Adv Neurol 1997;74: 127–139.PubMedGoogle Scholar
  109. 109.
    Lerner A, Shill H, Hanakawa T, Bushara K, Goldfine A, Hallett M. Regional cerebral blood flow correlates of the severity of writer’s cramp symptoms. Neuroimage 2004;21: 904–913.PubMedCrossRefGoogle Scholar
  110. 110.
    Hu XY, Wang L, Liu H, Zhang SZ. Functional magnetic resonance imaging study of writer’s cramp. Chin Med J (Engl) 2006; 119: 1263–1271.Google Scholar
  111. 111.
    Reibisch C, Berg D, Hofmann E, Solymosi L, Naumann M. Cerebral activation patterns in patients with writer’s cramp: a functional magnetic resonance imaging study. J Neurol 2001; 248: 10–17.CrossRefGoogle Scholar
  112. 112.
    Odergren T, Stone-Elander S, Ingvar M. Cerebral and cerebellar activation in correlation to the action-induced dystonia in writer’s cramp. Mov Disord 1998;13: 497–508.PubMedCrossRefGoogle Scholar
  113. 113.
    Ibáñez V, Sadato N, Karp B, Deiber MP, Hallett M. Deficient activation of the motor cortical network in patients with writer’s cramp. Neurology 1999;53: 96–105.PubMedGoogle Scholar
  114. 114.
    Oga T, Honda M, Toma K, et al. Abnormal cortical mechanisms of voluntary muscle relaxation in patients with writer’s cramp: an fMRI study. Brain 2002;125: 895–903.PubMedCrossRefGoogle Scholar
  115. 115.
    Filipović SR, Ljubisavljević M, Svetel M, Milanović S, Kacar A, Kostić VS. Impairment of cortical inhibition in writer’s cramp as revealed by changes in electromyographic silent period after transcranial magnetic stimulation. Neurosci Lett 1997;222: 167–170.PubMedCrossRefGoogle Scholar
  116. 116.
    Ridding MC, Sheean G, Rothwell JC, Inzelberg R, Kujirai T. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J Neurol Neurosurg Psychiatry 1995;59: 493–498.PubMedCrossRefGoogle Scholar
  117. 117.
    Siebner HR, Tormos JM, Ceballos-Baumann AO, et al. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp. Neurology 1999;52: 529–537.PubMedGoogle Scholar
  118. 118.
    Tinazzi M, Farina S, Edwards M, et al. Task-specific impairment of motor cortical excitation and inhibition in patients with writer’s cramp. Neurosci Lett 2005;378: 55–58.PubMedCrossRefGoogle Scholar
  119. 119.
    Sohn YH, Hallett M. Disturbed surround inhibition in focal hand dystonia. Ann Neurol 2004;56: 595–599.PubMedCrossRefGoogle Scholar
  120. 120.
    Gilio F, Currà A, Inghilleri M, et al. Abnormalities of motor cortex excitability preceding movement in patients with dystonia. Brain 2003;126: 1745–1754.PubMedCrossRefGoogle Scholar
  121. 121.
    Kessler KR, Rüge D, Ilić TV, Ziemann U. Short latency afferent inhibition and facilitation in patients with writer’s cramp. Mov Disord 2005;20: 238–242.PubMedCrossRefGoogle Scholar
  122. 122.
    Quartarone A, Bagnato S, Rizzo V, et al. Abnormal associative plasticity of the human motor cortex in writer’s cramp. Brain 2003;126: 2586–2596.PubMedCrossRefGoogle Scholar
  123. 123.
    Rosenkranz K, Altenmüller E, Siggelkow S, Dengler R. Alteration of sensorimotor integration in musician’s cramp: impaired focusing of proprioception. Clin Neurophysiol 2000; 111: 2040–2045.PubMedCrossRefGoogle Scholar
  124. 124.
    Edwards MJ, Huang YZ, Mir P, Rothwell JC, Bhatia KP. Abnormalities in motor cortical plasticity differentiate manifesting and nonmanifesting DYT1 carriers. Mov Disord 2006;21: 2181–2186.PubMedCrossRefGoogle Scholar
  125. 125.
    Murase N, Rothwell JC, Kaji R, et al. Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer’s cramp. Brain 2005;128: 104–115.PubMedCrossRefGoogle Scholar
  126. 126.
    Lefaucheur JP, Fénelon G, Ménard-Lefaucheur I, Wendling S, Nguyen JP. Low-frequency repetitive TMS of premotor cortex can reduce painful axial spasms in generalized secondary dystonia: a pilot study of three patients. Neurophysiol Clin 2004;34: 141–145.PubMedCrossRefGoogle Scholar
  127. 127.
    Allam N, Brasil-Neto JP, Brandao P, Weiler F, Barros Filho J, Tomaz C. Relief of primary cervical dystonia symptoms by low frequency transcranial magnetic stimulation of the premotor cortex: case report. Arq Neuropsiquiatr 2007;65: 697–699.PubMedGoogle Scholar
  128. 128.
    Siebner HR, Auer C, Conrad B. Abnormal increase in the corticomotor output to the affected hand during repetitive transcranial magnetic stimulation of the primary motor cortex in patients with writer’s cramp. Neurosci Lett 1999;262: 133–136.PubMedCrossRefGoogle Scholar
  129. 129.
    Stinear CM, Byblow WD. Impaired modulation of corticospinal excitability following subthreshold rTMS in focal hand dystonia. Hum Mov Sci 2004;23: 527–538.PubMedCrossRefGoogle Scholar
  130. 130.
    Gilio F, Suppa A, Bologna M, Lorenzano C, Fabbrini G, Berardelli A. Short-term cortical plasticity in patients with dystonia: a study with repetitive transcranial magnetic stimulation. Mov Disord 2007;22: 1436–1443.PubMedCrossRefGoogle Scholar
  131. 131.
    Quartarone A, Rizzo V, Bagnato S, et al. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain 2005;128: 1943–1950.PubMedCrossRefGoogle Scholar
  132. 132.
    Rizzo V, Siebner HR, Modugno N, et al. Shaping the excitability of human motor cortex with premotor rTMS. J Physiol 2004;554: 483–495.PubMedCrossRefGoogle Scholar
  133. 133.
    Gerschlager W, Siebner HR, Rothwell JC. Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology 2001;57: 449–455.PubMedGoogle Scholar
  134. 134.
    Huang YZ, Edwards MJ, Bhatia KP, Rothwell JC. One-Hz repetitive transcranial magnetic stimulation of the premotor cortex alters reciprocal inhibition in DYT1 dystonia. Mov Disord 2004; 19: 54–59.PubMedCrossRefGoogle Scholar
  135. 135.
    Málly J, Stone TW. Improvement in parkinsonian symptoms after repetitive transcranial magnetic stimulation. J Neurol Sci 1999; 162: 179–184.PubMedCrossRefGoogle Scholar
  136. 136.
    Málly J, Stone TW. Therapeutic and “dose-dependent” effect of repetitive microelectroshock induced by transcranial magnetic stimulation in Parkinson’s disease. J Neurosci Res 1999;57: 935–940.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2008

Authors and Affiliations

  • Allan D. Wu
    • 1
    • 2
  • Felipe Fregni
    • 3
    • 4
  • David K. Simon
    • 3
    • 4
  • Choi Deblieck
    • 1
    • 2
  • Alvaro Pascual-Leone
    • 3
    • 4
    • 5
  1. 1.Department of NeurologyUniversity of CaliforniaLos Angeles
  2. 2.Ahmanson-Lovelace Brain Mapping CenterUniversity of CaliforniaLos Angeles
  3. 3.Department of NeurologyBeth Israel Deaconess Medical CenterBoston
  4. 4.Berenson-Allen Center for Noninvasive Brain StimulationBeth Israel Deaconess Medical Center and Harvard Medical SchoolBoston
  5. 5.Institut Guttmann for NeurorehabilitationUniversitat AutònomaBarcelonaSpain

Personalised recommendations