, Volume 5, Issue 1, pp 26–36 | Cite as

The treatment of movement disorders by deep brain stimulation

  • Hong Yu
  • Joseph S. Neimat
Review Article


It has been understood, for some time, that modulation of deep brain nuclei within the basal ganglia and thalamus can have a therapeutic effect in patients with movement disorders. Because of its reversibility and adjustability, deep brain stimulation (DBS) has largely come to replace traditional ablation procedures. The clinical effects of DBS vary, depending both on the target being stimulated and on the parameters of stimulation. Both aspects are currently the subject of substantial research and discovery. The most common targets for DBS treatment include the subthalamic nucleus for the treatment of advanced Parkinson’s disease, the ventral intermediate nucleus of the thalamus for the treatment of medically refractory essential tremor, and the globus pallidus interna for the treatment of both cervical and generalized dystonias and Parkinson’s disease. We review the current indications, targets, outcomes, and general procedure of DBS for essential tremor, Parkinson’s disease, and dystonia.

Key Words

Movement disorders Parkinson’s disease essential tremor dystonia deep brain stimulation DBS 


  1. 1.
    Hassler R, Riechert T, Mundinger F, Umbach W, Ganglberger JA. Physiological observations in stereotaxic operations in extrapyramidal motor disturbances. Brain 1960;83:337–350.PubMedCrossRefGoogle Scholar
  2. 2.
    Ohye C, Kubota K, Hongo T, Nagao T, Narabayashi H. Ventrolateral and subventrolateral thalamic stimulation: motor effects. Arch Neurol 1964;11:427–434.PubMedGoogle Scholar
  3. 3.
    Lyons KE, Pahwa R, Cornelia CL, et al. Benefits and risks of pharmacological treatments for essential tremor. Drug Saf 2003; 26:461–481.PubMedCrossRefGoogle Scholar
  4. 4.
    Lyons KE, Pahwa R. Deep brain stimulation and essential tremor. J Clin Neurophysiol 2004;21:2–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Hassler R. Anatomy of the thalamus. In: Schaltenbrand G, Bailey P, editor. Introduction to stereotaxis with an atlas of the human brain. 1st ed. Stuttgart: Thieme, 1959:230–290.Google Scholar
  6. 6.
    Starr PA, Vitek JL, Bakay RA. Deep brain stimulation for movement disorders. Neurosurg Clin North Am 1998;9:381–402.Google Scholar
  7. 7.
    Lenz FA, Kwan HC, Martin RL, Tasker RR, Dostrovsky JO, Lenz YE. Single unit analysis of the human ventral thalamic nuclear group: tremor-related activity in functionally identified cells. Brain 1994;117: 531–543.PubMedCrossRefGoogle Scholar
  8. 8.
    Lenz FA, Tasker RR, Kwan HC, et al. Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3–6 Hz component of parkinsonian tremor. J Neurosci 1988;8: 754–764.PubMedGoogle Scholar
  9. 9.
    Hirai T, Miyazaki M, Nakajima H, Shibazaki T, Ohye C. The correlation between tremor characteristics and the predicted volume of effective lesions in stereotaxic nucleus ventralis intermedius thalamotomy. Brain 1983;106: 1001–1018.PubMedCrossRefGoogle Scholar
  10. 10.
    Hubble JP, Busenbark KL, Wilkinson S, Penn RD, Lyons K, Koller WC. Deep brain stimulation for essential tremor. Neurology 1996;46:1150–1153.PubMedGoogle Scholar
  11. 11.
    Dostrovsky JO, Lozano AM. Mechanisms of deep brain stimulation. Mov Disord 2002;17 Suppl 3: S63-S68.PubMedCrossRefGoogle Scholar
  12. 12.
    Benabid AL, Pollak P, Gervason C, et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 1991;337:403–406.PubMedCrossRefGoogle Scholar
  13. 13.
    Hubble JP, Busenbark KL, Wilkinson S, et al. Effects of thalamic deep brain stimulation based on tremor type and diagnosis. Mov Disord 1997;12:337–341.PubMedCrossRefGoogle Scholar
  14. 14.
    Ondo W, Jankovic J, Schwartz K, Almaguer M, Simpson RK. Unilateral thalamic deep brain stimulation for refractory essential tremor and Parkinson’s disease tremor. Neurology 1998;51:1063–1069.PubMedGoogle Scholar
  15. 15.
    Koller WC, Lyons KE, Wilkinson SB, Troster AI, Pahwa R. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov Disord 2001;16:464–468.PubMedCrossRefGoogle Scholar
  16. 16.
    Fahn S, Tolosa E, Marin C. Clinical rating scale for tremor. In: Jankovic J, Tolosa E, Parkinson’s disease and movement disorders, 2nd ed. Baltimore: Williams & Wilkins, 1993:271–280.Google Scholar
  17. 17.
    Rehncrona S, Johnels B, Widner H, Törnqvist AL, Hariz M, Sydow O. Long-term efficacy of thalamic deep brain stimulation for tremor: double-blind assessments. Mov Disord 2003;18:163–170.PubMedCrossRefGoogle Scholar
  18. 18.
    Limousin P, Speelman JD, Gielen F, Janssens M. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 1999;66:289–296.PubMedCrossRefGoogle Scholar
  19. 19.
    Obwegeser AA, Uitti RJ, Turk MF, Strongosky AJ, Wharen RE. Thalamic stimulation for the treatment of midline tremors in essential tremor patients. Neurology 2000;54:2342–2344.PubMedGoogle Scholar
  20. 20.
    Ondo W, Almaguer M, Jankovic J, Simpson RK. Thalamic deep brain stimulation: comparison between unilateral and bilateral placement. Arch Neurol 2001;58:218–222.PubMedCrossRefGoogle Scholar
  21. 21.
    Carpenter MA, Pahwa R, Miyawaki KL, Wilkinson SB, Searl JP, Koller WC. Reduction in voice tremor under thalamic stimulation. Neurology 1998;50:796–798.PubMedGoogle Scholar
  22. 22.
    Sydow O, Thobois S, Alesch F, Speelman JD. Multicentre European study of thalamic stimulation in essential tremor: a six year follow up. J Neurol Neurosurg Psychiatry 2003;74:1387–1391.PubMedCrossRefGoogle Scholar
  23. 23.
    Benabid AL, Pollak P, Gao D, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 1996;84:203–214.PubMedCrossRefGoogle Scholar
  24. 24.
    Siegfried J, Lippitz B. Chronic electrical stimulation of the VL—VPL complex and of the pallidum in the treatment of movement disorders: personal experience since 1982. Stereotact Funct Neurosurg 1994;62:71–75.PubMedCrossRefGoogle Scholar
  25. 25.
    Vitek JL, Ashe J, DeLong MR, Alexander GE. Physiologic properties and somatotopic organization of the primate motor thalamus. J Neurophysiol 1994;71:1498–1513.PubMedGoogle Scholar
  26. 26.
    Nguyen JP, Degos JD. Thalamic stimulation and proximal tremor: a specific target in the nucleus ventrointermedius thalami. Arch Neurol 1993;50:498–500.PubMedGoogle Scholar
  27. 27.
    Foote KD, Seignourel P, Fernandez HH, et al. Dual electrode thalamic deep brain stimulation for the treatment of posttraumatic and multiple sclerosis tremor. Neurosurgery 2006;58:ONS-280–285; discussion ONS-285-286.CrossRefGoogle Scholar
  28. 28.
    Tasker RR. Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol 1998;49: 145–153; discussion 153-144.PubMedCrossRefGoogle Scholar
  29. 29.
    Pahwa R, Lyons KE, Wilkinson SB, et al. Comparison of thalamotomy to deep brain stimulation of the thalamus in essential tremor. Mov Disord 2001;16:140–143.PubMedCrossRefGoogle Scholar
  30. 30.
    Schuurman PR, Bosch DA, Bossuyt PM, et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 2000;342:461–468.PubMedCrossRefGoogle Scholar
  31. 31.
    Koller W, Pahwa R, Busenbark K, et al. High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 1997;42:292–299.PubMedCrossRefGoogle Scholar
  32. 32.
    Pahwa R, Lyons KL, Wilkinson SB, et al. Bilateral thalamic stimulation for the treatment of essential tremor. Neurology 1999; 53:1447–1450.PubMedGoogle Scholar
  33. 33.
    Jankovic J, Cardoso F, Grossman RG, Hamilton WJ. Outcome after stereotactic thalamotomy for parkinsonian, essential, and other types of tremor. Neurosurgery 1995;37:680–686; discussion 686–687.PubMedCrossRefGoogle Scholar
  34. 34.
    Twelves D, Perkins KSM, Counsell C. Systematic review of incidence studies of Parkinson’s disease. Mov Disord 2003;18:19–31.PubMedCrossRefGoogle Scholar
  35. 35.
    Schoenberg BS. Descriptive epidemiology of Parkinson’s disease: disease distribution and hypothesis formulation. Adv Neurol 1987;45:277–283.PubMedGoogle Scholar
  36. 36.
    Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007;68:384–386.PubMedCrossRefGoogle Scholar
  37. 37.
    Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease: a community-based study. Brain 2000; 123:2297–2305.PubMedCrossRefGoogle Scholar
  38. 38.
    Lang AE, Houeto JL, Krack P, et al. Deep brain stimulation: preoperative issues. Mov Disord 2006;21 Suppl 14:S171-S196.PubMedCrossRefGoogle Scholar
  39. 39.
    Rossi P, Colosimo C, Moro E, Tonali P, Albanese A. Acute challenge with apomorphine and levodopa in parkinsonism. Eur Neurol 2000;43:95–101.PubMedCrossRefGoogle Scholar
  40. 40.
    Hughes AJ, Lees AJ, Stem GM. Challenge tests to predict the dopaminergic response in untreated Parkinson’s disease. Neurology 1991;41:1723–1725.PubMedGoogle Scholar
  41. 41.
    Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12:366–375.PubMedCrossRefGoogle Scholar
  42. 42.
    DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13:281–285.PubMedCrossRefGoogle Scholar
  43. 43.
    Mengual E, de las Heras S, Erro E, Lanciego JL, Giménez-Amaya JM. Thalamic interaction between the input and the output systems of the basal ganglia. J Chem Neuroanat 1999; 16:187–200.PubMedCrossRefGoogle Scholar
  44. 44.
    Hammond C, Rouzaire-Dubois B, Féger J, Jackson A, Crossman AR. Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat. Neuroscience 1983;9:41–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Kopell BH, Rezai AR, Chang JW, Vitek JL. Anatomy and physiology of the basal ganglia: implications for deep brain stimulation for Parkinson’s disease. Mov Disord 2006;21 Suppl 14:S238-S246.PubMedCrossRefGoogle Scholar
  46. 46.
    Urbain N, Rentéro N, Gervasoni D, Renaud B, Chouvet G. The switch of subthalamic neurons from an irregular to a bursting pattern does not solely depend on their GABAergic inputs in the anesthetic-free rat. J Neurosci 2002;22:8665–8675.PubMedGoogle Scholar
  47. 47.
    Wichmann T, Bergman H, DeLong MR. The primate subthalamic nucleus: III, Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 1994;72: 521–530.PubMedGoogle Scholar
  48. 48.
    Vitek JL. Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 2002;17 Suppl 3:S69-S72.PubMedCrossRefGoogle Scholar
  49. 49.
    Aziz TZ, Peggs D, Sambrook MA, Crossman AR. Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 1991;6:288–292.PubMedCrossRefGoogle Scholar
  50. 50.
    Guridi J, Herrero MT, Luquin MR, et al. Subthalamotomy in parkinsonian monkeys: behavioural and biochemical analysis. Brain 1996;119:1717–1727.PubMedCrossRefGoogle Scholar
  51. 51.
    Vidakovic A, Dragasevic N, Kostic VS. Hemiballism: report of 25 cases. J Neurol Neurosurg Psychiatry 1994;57:945–949.PubMedCrossRefGoogle Scholar
  52. 52.
    Pollak P, Benabid AL, Gross C, et al. Effects of the stimulation of the subthalamic nucleus in Parkinson disease [In French]. Rev Neurol (Paris) 1993;149:175–176.Google Scholar
  53. 53.
    Kleiner-Fisman G, Herzog J, Fisman DN, et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 2006;21 Suppl 14:S290-S304.PubMedCrossRefGoogle Scholar
  54. 54.
    Hamani C, Richter E, Schwalb JM, Lozan AM. Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery 2005;56:1313–1321; discussion 1321-1314.PubMedCrossRefGoogle Scholar
  55. 55.
    Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 2003;349:1925–1934.PubMedCrossRefGoogle Scholar
  56. 56.
    Schüpbach WMM, Chastan N, Welter ML, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J Neurol Neurosurg Psychiatry 2005;76:1640–1644.PubMedCrossRefGoogle Scholar
  57. 57.
    Deuschl G, Schade-Brittinger C, Krack P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease [Erratum in: N Engl J Med 2006;355:1289]. N Engl J Med 2006; 355:896–908.PubMedCrossRefGoogle Scholar
  58. 58.
    Schüpbach WMM, Maltête D, Houeto JL, et al. Neurosurgery at an earlier stage of Parkinson disease: a randomized, controlled trial. Neurology 2007;68:267–271.PubMedCrossRefGoogle Scholar
  59. 59.
    Derost PP, Ouchchane L, Morand D, et al. Is DBS-STN appropriate to treat severe Parkinson disease in an elderly population? Neurology 2007;68:1345–1355.PubMedCrossRefGoogle Scholar
  60. 60.
    Limousin P, Pollak P, Hoffmann D, Benazzouz A, Perret JE, Benabid AL. Abnormal involuntary movements induced by subthalamic nucleus stimulation in parkinsonian patients. Mov Disord 1996;11:231–235.PubMedCrossRefGoogle Scholar
  61. 61.
    Santens P, De Letter M, Van Borsel J, De Reuck J, Caemaert J. Lateralized effects of subthalamic nucleus stimulation on different aspects of speech in Parkinson’s disease. Brain Lang 2003; 87:253–258.PubMedCrossRefGoogle Scholar
  62. 62.
    Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 2006; 12:265–272.PubMedCrossRefGoogle Scholar
  63. 63.
    Bemey A, Vingerhoets F, Perrin A, et al. Effect on mood of subthalamic DBS for Parkinson’s disease: a consecutive series of 24 patients. Neurology 2002;59:1427–1429.Google Scholar
  64. 64.
    Piasecki SD, Jefferson JW. Psychiatric complications of deep brain stimulation for Parkinson’s disease. J Clin Psychiatry 2004; 65:845–849.PubMedCrossRefGoogle Scholar
  65. 65.
    Burkhard PR, Vingerhoets FJ, Bemey A, Bogousslavsky J, Villemure JG, Ghika J. Suicide after successful deep brain stimulation for movement disorders. Neurology 2004;63:2170–2172.PubMedGoogle Scholar
  66. 66.
    Hutchison WD, Lozano AM, Tasker RR, Lang AE, Dostrovsky JO. Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res 1997; 113:557–563.PubMedCrossRefGoogle Scholar
  67. 67.
    Davis KD, Taub E, Houle S, et al. Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nat Med 1997;3:671–674.PubMedCrossRefGoogle Scholar
  68. 68.
    Baron MS, Vitek JL, Bakay RA, et al. Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol 1996;40:355–366.PubMedCrossRefGoogle Scholar
  69. 69.
    Lang AE, Lozano AM, Montgomery E, Duff J, Tasker R, Hutchinson W. Posteroventral medial pallidotomy in advanced Parkinson’s disease. N Engl J Med 1997;337:1036–1042.PubMedCrossRefGoogle Scholar
  70. 70.
    Laitinen LV, Bergenheim AT, Hariz MI. Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms. Stereotact Funct Neurosurg 1992;58:14–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Gross C, Rougier A, Guehl D, Boraud T, Julien J, Bioulac B. High-frequency stimulation of the globus pallidus intemalis in Parkinson’s disease: a study of seven cases. J Neurosurg 1997; 87:491–498.PubMedCrossRefGoogle Scholar
  72. 72.
    Pahwa R, Wilkinson S, Smith D, Lyons K, Miyawaki E, Koller WC. High-frequency stimulation of the globus pallidus for the treatment of Parkinson’s disease. Neurology 1997;49:249–253.PubMedGoogle Scholar
  73. 73.
    Kumar R, Lang AE, Rodriguez-Oroz MC, et al. Deep brain stimulation of the globus pallidus pars intema in advanced Parkinson’s disease. Neurology 2000;55:S34-S39.PubMedGoogle Scholar
  74. 74.
    Volkmann J, Allert N, Voges J, Sturm V, Schnitzler A, Freund HJ. Long-term results of bilateral pallidal stimulation in Parkinson’s disease. Ann Neurol 2004;55:871–875.PubMedCrossRefGoogle Scholar
  75. 75.
    Visser-Vandewalle V, van der Linden C, Temel Y, Nieman F, Celik H, Beuls E. Long-term motor effect of unilateral pallidal stimulation in 26 patients with advanced Parkinson disease. J Neurosurg 2003;99: 701–707.PubMedCrossRefGoogle Scholar
  76. 76.
    Vingerhoets G, van der Linden C, Lannoo E, et al. Cognitive outcome after unilateral pallidal stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999;66:297–304.PubMedCrossRefGoogle Scholar
  77. 77.
    Volkmann J, Allert N, Voges J, Weiss PH, Freund HJ, Sturm V. Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD [Erratum in: Neurology 2001;57:1354]. Neurology 2001;56: 548–551.PubMedGoogle Scholar
  78. 78.
    Burchiel KJ, Anderson VC, Favre J, Hammerstad JP. Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: results of a randomized, blinded pilot study. Neurosurgery 1999;45:1375–1382; discussion 1382-1374.PubMedCrossRefGoogle Scholar
  79. 79.
    Peppe A, Pierantozzi M, Bassi A, et al. Stimulation of the subthalamic nucleus compared with the globus pallidus internus in patients with Parkinson disease. J Neurosurg 2004;101:195–200.PubMedCrossRefGoogle Scholar
  80. 80.
    Rodriguez-Oroz MC, Obeso JA, Lang AE, et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 2005;128:2240–2249.PubMedCrossRefGoogle Scholar
  81. 81.
    Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 2005;62:554–560.PubMedCrossRefGoogle Scholar
  82. 82.
    Fahn S, Bressman SB, Marsden CD. Classification of dystonia. Adv Neurol 1998;78:1–10.PubMedGoogle Scholar
  83. 83.
    Krauss JK, Pohle T, Weber S, Ozdoba C, Burgunder JM. Bilateral stimulation of globus pallidus internus for treatment of cervical dystonia. Lancet 1999;354:837–838.PubMedGoogle Scholar
  84. 84.
    Ozelius LJ, Hewett J, Kramer P, et al. Fine localization of the torsion dystonia gene (DYT1) on human chromosome 9q34: YAC map and linkage disequilibrium. Genome Res 1997;7:483–494.PubMedGoogle Scholar
  85. 85.
    Ozelius LJ, Hewett JW, Page CE, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 1997;17:40–48.PubMedCrossRefGoogle Scholar
  86. 86.
    Bressman SB, de Leon D, Raymond D, et al. Clinical-genetic spectrum of primary dystonia. Adv Neurol 1998;78:79–91.PubMedGoogle Scholar
  87. 87.
    Han F, Racacho L, Lang AE, Bulman DE, Grimes DA. Refinement of the DYT15 locus in myoclonus dystonia. Mov Disord 2007;22:888–892.PubMedCrossRefGoogle Scholar
  88. 88.
    Grotzsch H, Pizzolato GP, Ghika J, et al. Neuropathology of a case of dopa-responsive dystonia associated with a new genetic locus, DYT14. Neurology 2002;58:1839–1842.PubMedGoogle Scholar
  89. 89.
    Valente EM, Bentivoglio AR, Cassetta E, et al. DYT13, a novel primary torsion dystonia locus, maps to chromosome 1p36.13-36.32 in an Italian family with cranial-cervical or upper limb onset. Ann Neurol 2001;49:362–366.PubMedCrossRefGoogle Scholar
  90. 90.
    Fahn S. Drug treatment of hyperkinetic movement disorders. Semin Neurol 1987;7:192–208.PubMedCrossRefGoogle Scholar
  91. 91.
    Jankovic J, Schwartz K. Response and immunoresistance to botulinum toxin injections. Neurology 1995;45: 1743–1746.PubMedGoogle Scholar
  92. 92.
    Brin MF, Jankovic J, Cornelia C, et al. Treatment of cervical dystonia using botulinum toxin. In: Kurlan R, Treatment of movement disorders. Philadelphia: Lippincott Williams & Wilkins, 1995:183–246.Google Scholar
  93. 93.
    Lew MF, Brashear A, Factor S. The safety and efficacy of botulinum toxin type B in the treatment of patients with cervical dystonia: summary of three controlled clinical trials. Neurology 2000;55:S29-S35.PubMedGoogle Scholar
  94. 94.
    Ondo WG, Krauss JK. Surgical therapies for dystonia. In: Brin MF, Cornelia C, Jankovic J, Dystonia: etiology, clinical features, and treatment. Philadelphia: Lippincott Williams & Wilkins, 2003:125–147.Google Scholar
  95. 95.
    Cooper IS. 20-year followup study of the neurosurgical treatment of dystonia musculorum deformans. Adv Neurol 1976;14: 423–452.PubMedGoogle Scholar
  96. 96.
    Andrew J, Fowler CJ, Harrison MJ. Stereotaxic thalamotomy in 55 cases of dystonia. Brain 1983;106:981–1000.PubMedCrossRefGoogle Scholar
  97. 97.
    Cardoso F, Jankovic J, Grossman RG, Hamilton WJ. Outcome after stereotactic thalamotomy for dystonia and hemiballismus. Neurosurgery 1995;36:501–507; discussion 507–508.PubMedCrossRefGoogle Scholar
  98. 98.
    Tasker RR, Doorly T, Yamashiro K. Thalamotomy in generalized dystonia. Adv Neurol 1988;50: 615–631.PubMedGoogle Scholar
  99. 99.
    Iacono RP, Kuniyoshi SM, Lonser RR, Maeda G, Inae AM, Ashwal S. Simultaneous bilateral pallidoansotomy for idiopathic dystonia musculorum deformans. Pediatr Neurol 1996;14:145–148.PubMedCrossRefGoogle Scholar
  100. 100.
    Vitek JL, Zhang J, Evatt M, et al. GPi pallidotomy for dystonia: clinical outcome and neuronal activity. Adv Neurol 1998;78:211–219.PubMedGoogle Scholar
  101. 101.
    Lozano AM, Kumar R, Gross RE, et al. Globus pallidus internus pallidotomy for generalized dystonia. Mov Disord 1997;12:865–870.PubMedCrossRefGoogle Scholar
  102. 102.
    Silberstein P, Kuhn AA, Kupsch A, et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 2003;126:2597–2608.PubMedCrossRefGoogle Scholar
  103. 103.
    Vitek JL, Chockkan V, Zhang JY, et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol 1999;46:22–35.PubMedCrossRefGoogle Scholar
  104. 104.
    Hutchison WD, Lang AE, Dostrovsky JO, Lozano AM. Pallidal neuronal activity: implications for models of dystonia. Ann Neurol 2003;53:480–488.PubMedCrossRefGoogle Scholar
  105. 105.
    Lenz FA, Suarez JI, Metman LV, et al. Pallidal activity during dystonia: somatosensory reorganisation and changes with severity. J Neurol Neurosurg Psychiatry 1998;65:767–770.PubMedCrossRefGoogle Scholar
  106. 106.
    Kuhn AA, Meyer BU, Trottenberg T, Brandt SA, Schneider GH, Kupsch A. Modulation of motor cortex excitability by pallidal stimulation in patients with severe dystonia. Neurology 2003;60:768–774.PubMedGoogle Scholar
  107. 107.
    Magyar-Lehmann S, Antonini A, Roelcke U, et al. Cerebral glucose metabolism in patients with spasmodic torticollis. Mov Disord 1997;12:704–708.PubMedCrossRefGoogle Scholar
  108. 108.
    Kupsch A, Kuehn A, Klaffke S, et al. Deep brain stimulation in dystonia. J Neurol 2003;250 Suppl 1:I47-I52.PubMedGoogle Scholar
  109. 109.
    Yianni J, Bain PG, Gregory RP, et al. Post-operative progress of dystonia patients following globus pallidus internus deep brain stimulation. Eur J Neurol 2003;10:239–247.PubMedCrossRefGoogle Scholar
  110. 110.
    Coubes P, Roubertic A, Vayssiere N, Hemm S, Echenne B. Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet 2000;355:2220–2221.PubMedCrossRefGoogle Scholar
  111. 111.
    Cif L, El Fertit H, Vayssiere N, et al. Treatment of dystonic syndromes by chronic electrical stimulation of the internal globus pallidus. J Neurosurg Sci 2003;47:52–55.PubMedGoogle Scholar
  112. 112.
    Vidailhet M, Vercueil L, Houeto JL, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 2005;352:459–467.PubMedCrossRefGoogle Scholar
  113. 113.
    Kupsch A, Benecke R, Muller J, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 2006;355:1978–1990.PubMedCrossRefGoogle Scholar
  114. 114.
    Capelle HH, Weigel R, Krauss JK. Bilateral pallidal stimulation for blepharospasm-oromandibular dystonia (Meige syndrome). Neurology 2003;60:2017–2018.PubMedGoogle Scholar
  115. 115.
    Muta D, Goto S, Nishikawa S, et al. Bilateral pallidal stimulation for idiopathic segmental axial dystonia advanced from Meige syndrome refractory to bilateral thalamotomy. Mov Disord 2001; 16:774–777.PubMedCrossRefGoogle Scholar
  116. 116.
    Holloway KL, Baron MS, Brown R, Cifu DX, Carne W, Ramakrishnan V. Deep brain stimulation for dystonia: a meta-analysis. Neuromodulation 2006;9:253–261.CrossRefGoogle Scholar
  117. 117.
    Kupsch A, Klaffke S, Kühn AA, et al. The effects of frequency in pallidal deep brain stimulation for primary dystonia [Erratum in: J Neurol 2004;251:1031]. J Neurol 2003;250:1201–1205.PubMedCrossRefGoogle Scholar
  118. 118.
    Alterman RL, Shils JL, Miravite J, Tagliati M. Lower stimulation frequency can enhance tolerability and efficacy of pallidal deep brain stimulation for dystonia. Mov Disord 2007;22:366–368.PubMedCrossRefGoogle Scholar
  119. 119.
    Kelly PJ, Derome P, Guiot G. Thalamic spatial variability and the surgical results of lesions placed with neurophysiologic control. Surg Neurol 1978;9:307–315.PubMedGoogle Scholar
  120. 120.
    Andrade-Souza YM, Schwalb JM, Hamani C, et al. Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson’s disease. Neurosurgery 2005;56(2 Suppl):360–368; discussion 360–368.PubMedCrossRefGoogle Scholar
  121. 121.
    Nowinski WL, Belov D, Pollak P, Benabid AL. Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas. Neurosurgery 2005;57:319–330; discussion 319–330.PubMedCrossRefGoogle Scholar
  122. 122.
    D’Haese PF, Pallavaram S, Niermann K, et al. Automatic selection of DBS target points using multiple electrophysiological atlases. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 2005;8: 427–434.Google Scholar
  123. 123.
    Umemura A, Jaggi JL, Hurtig HI, et al. Deep brain stimulation for movement disorders: morbidity and mortality in 109 patients. J Neurosurg 2003;98:779–784.PubMedCrossRefGoogle Scholar
  124. 124.
    Henderson JM. Frameless localization for functional neurosurgical procedures: a preliminary accuracy study. Stereotact Funct Neurosurg 2004;82:135–141.PubMedCrossRefGoogle Scholar
  125. 125.
    Fitzpatrick JM, Konrad PE, Nickele C, Cetinkaya E, Kao C. Accuracy of customized miniature stereotactic platforms. Stereotact Funct Neurosurg 2005;83:25–31.PubMedCrossRefGoogle Scholar
  126. 126.
    Lenz FA, Dostrovsky JO, Kwan HC, Tasker RR, Yamashiro K, Murphy JT. Methods for microstimulation and recording of single neurons and evoked potentials in the human central nervous system. J Neurosurg 1988;68:630–634.PubMedCrossRefGoogle Scholar
  127. 127.
    Hariz MI, Fodstad H. Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg 1999;72:157–169.PubMedCrossRefGoogle Scholar
  128. 128.
    Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 2005;56:722–732; discussion 722–732.PubMedCrossRefGoogle Scholar
  129. 129.
    Yamamoto M, Jimbo M, Ide M, Tanaka N, Umebara Y, Hagiwara S. Postoperative neurosurgical infection and antibiotic prophylaxis. Neurol Med Chir (Tokyo) 1992;32:72–79.CrossRefGoogle Scholar

Copyright information

© Springer New York 2008

Authors and Affiliations

  1. 1.Department of Neurological SurgeryVanderbilt UniversityNashville

Personalised recommendations