, Volume 4, Issue 3, pp 434–442

Magnetic resonance imaging of human brain macrophage infiltration

  • Klaus G. Petry
  • Claudine Boiziau
  • Vincent Dousset
  • Bruno Brochet


Macrophage tracking by magnetic resonance imaging (MRI) with iron oxide nanoparticles has been developed during the last decade for numerous diseases of the CNS. Experimental studies on animal models were confirmed by first clinical applications of MRI technology of brain macrophages for multiple sclerosis, ischemic stroke lesions, and tumors. As activated macrophages act in concert with other immune competent cells, this innovative MRI approach provides new functional data on the immune reaction in these CNS diseases. The MRI detection of brain macrophages defines precise spatial and temporal patterns of macrophage involvement that helps to characterize individual neurological disorders. This approach is being explored as an in vivo marker for the clinical diagnosis of cerebral lesion activity, in experimental models for the prognosis of disease development, and to determine the efficacy of immunomodulatory treatments under clinical evaluation. Comparative brain imaging follow-up studies of blood-brain barrier leakage by MRI with gadolinium-chelates, microglia activation by positron emission tomography with radiotracer ligand PK11195 and MRI detection of macrophage infiltration provide more precise information about the pathophysiological cascade of inflammatory events in cerebral diseases. Such multimodal characterization of the inflammatory events should help in the monitoring of patients, in defining precise time intervals for therapeutic interventions, and in developing and evaluating new therapeutic strategies.

Key Words

Macrophages MRI brain diseases multiple sclerosis stroke glioma iron oxide nanoparticles 


  1. 1.
    Mosser DM. The many faces of macrophage activation. J Leuk Biol 2003;73: 209–212.CrossRefGoogle Scholar
  2. 2.
    Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005;175: 342–349.PubMedGoogle Scholar
  3. 3.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004;25: 677–686.CrossRefPubMedGoogle Scholar
  4. 4.
    Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 1990;175: 494–498.PubMedGoogle Scholar
  5. 5.
    Corot C, Petry KG, Trivedi R, et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 2004;39: 619–625.CrossRefPubMedGoogle Scholar
  6. 6.
    Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006;58: 1471–1504.CrossRefPubMedGoogle Scholar
  7. 7.
    Cagnin A, Kassiou M, Meikle SR, Banati RB. Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 2007;4: 443–452.CrossRefPubMedGoogle Scholar
  8. 8.
    Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 2006;52: 61–76.CrossRefPubMedGoogle Scholar
  9. 9.
    Filippi M, Rocca MA. Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve. Neurotherapeutics 2007;4: 401–413.CrossRefPubMedGoogle Scholar
  10. 10.
    Deloire-Grassin MS, Brochet B, Quesson B, et al. In vivo evaluation of remyelination in rat brain by magnetization transfer imaging. J Neurol Sci 2000;178: 10–16.CrossRefPubMedGoogle Scholar
  11. 11.
    Brochet B, Dousset V. Pathological correlates of magnetization transfer imaging abnormalities in animal models and humans with multiple sclerosis. Neurology 1999;53(suppl 3): S12-S17.PubMedGoogle Scholar
  12. 12.
    Bauer J, Ruuls SR, Huitinga I, Dijkstra CD. The role of macrophage subpopulations in autoimmune disease of the central nervous system. Histochem J 1996;28: 83–97.CrossRefPubMedGoogle Scholar
  13. 13.
    Dousset V, Ballarino L, Delalande C et al. Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2-weighted, conventional T2-weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. AJNR Am J Neuroradiol 1999;20: 223–227.PubMedGoogle Scholar
  14. 14.
    Rausch M, Hiestand P, Baumann D, Cannet C, Rudin M. MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magn Reson Med 2003;50: 309–314.CrossRefPubMedGoogle Scholar
  15. 15.
    Floris S, Blezer EL, Schreibelt G, et al. Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 2004;127(Pt 3): 616–627.CrossRefPubMedGoogle Scholar
  16. 16.
    Boulleme AI, Rodriguez JJ, Touil T, et al. Anti-S-nitrosocysteine antibodies are a predictive marker for demyelination in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neurosci 2002;22: 123–132.Google Scholar
  17. 17.
    Vignes JR, Deloire MS, Petry KG, Nagy F. Characterization and restoration of altered inhibitory and excitatory control of micturition reflex in experimental autoimmune encephalomyelitis in rats. J Physiol (Lond.) 2007;578(Pt 2): 439–450.CrossRefGoogle Scholar
  18. 18.
    Dousset V, Gomez C, Petty KG, Delalande C, Caille JM. Dose and scanning delay using USPIO for central nervous system macrophage imaging. MAGMA 1999;8: 185–189.CrossRefPubMedGoogle Scholar
  19. 19.
    Bendszus M, Stoll G. Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. J Neurosci 2003;23: 10892–10896.PubMedGoogle Scholar
  20. 20.
    Dousset V, Brochet B, Deloire MS, et al. MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR Am J Neuroradiol 2006;27: 1000–1005.PubMedGoogle Scholar
  21. 21.
    Manninger SP, Muldoon LL, Nesbit G, Murillo T, Jacobs PM, Neuwelt EA. An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. ANJR Am J Neuroradiol 2005; 26: 2290–2300.Google Scholar
  22. 22.
    Lassmann H, Brück W, Luchinetti CF. Heterogeneity of multiple sclerosis pathogenesis. Implications for diagnosis and therapy. Trends Mol Med 2001;7: 115–121.CrossRefPubMedGoogle Scholar
  23. 23.
    Boven LA, Van Meurs M, Van Zwam M, et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 2006;129: 517–526.CrossRefPubMedGoogle Scholar
  24. 24.
    Mikita J, Deloire MS, Canron MH, et al. Prediction of macrophage phenotypes in inflammatory CNS lesions of relapsing EAE disease by MRI with iron nanoparticles. Fifth forum of European Neuroscience Vienna-Austria; July 8–12 2006. A096.13 (abstract).Google Scholar
  25. 25.
    Heyn C, Ronald JA, Mackenzie LT, et al. In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 2006;55: 23–29.CrossRefPubMedGoogle Scholar
  26. 26.
    Slotkin JR, Cahill KS, Tharin SA, Shapiro EM. Cellular magnetic resonance imaging: Nanometer and micrometer size particles for noninvasive cell localization. Neurotherapeutics 4:428–433.Google Scholar
  27. 27.
    Crane IJ, Forrester JV. Th1 and Th2 lymphocytes in autoimmune disease. Crit Rev Immunol 2005;25: 75–102.CrossRefPubMedGoogle Scholar
  28. 28.
    Deloire MS, Touil T, Brochet B, Dousset V, Caille JM, Petty KG. Macrophage brain infiltration in experimental autoimmune encephalomyelitis is not completely compromised by suppressed T-cell invasion: in vivo magnetic resonance imaging illustration in effective anti-VLA-4 antibody treatment. Mult Scler 2004;10: 540–548.CrossRefPubMedGoogle Scholar
  29. 29.
    von Adrian UH, Engelhardt B. Alpha 4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 2003;348: 68–72.CrossRefGoogle Scholar
  30. 30.
    Kappos L, Antel J, Comi G, et al. FTY720 D2201 Study Group. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 2006;355: 1124–1140.CrossRefPubMedGoogle Scholar
  31. 31.
    Rausch M, Hiestand P, Foster CA, Baumann DR, Cannet C, Rudin M. Predictability of FTY720 efficacy in experimental autoimmune encephalomyelitis by in vivo macrophage tracking: clinical implications for ulttasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. J Magn Reson Imaging 2004;20: 16–24.CrossRefPubMedGoogle Scholar
  32. 32.
    Vollmer T, Key L, Durkalski V, et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 2004;363: 1607–1608.CrossRefPubMedGoogle Scholar
  33. 33.
    Toft-Hansen H, Buist R, Sun XJ, Schellenberg A, Peeling J, Owens T. Metalloproteinases control brain inflammation induced by Pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system. J Immunol 2006; 177: 7242–7249.PubMedGoogle Scholar
  34. 34.
    Berger C, Hiestand P, Kindler-Baumann D, Rudin M, Rausch M. Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage. NMR Biomed 2006;19: 101–107.CrossRefPubMedGoogle Scholar
  35. 35.
    Brochet B, Deloire MS, Touil T, et al. Early macrophage MRI of inflammatory lesions predicts lesion severity and disease development in relapsing EAE. Neuroimage 2006;32: 266–274.CrossRefPubMedGoogle Scholar
  36. 36.
    Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW. Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 1999;30: 77–105.CrossRefPubMedGoogle Scholar
  37. 37.
    Dirnagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 2003;26: 248–254.CrossRefPubMedGoogle Scholar
  38. 38.
    Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 2003;183: 25–33.CrossRefPubMedGoogle Scholar
  39. 39.
    Tanaka R, Komine-Kobayashi M, Mochizuki H, et al. Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 2003;117: 531–539.CrossRefPubMedGoogle Scholar
  40. 40.
    Rausch M, Sauter A, Fröhlich J, Neubacher U, Radu EW, Rudin M. Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn Reson Med 2001; 46: 1018–1022.CrossRefPubMedGoogle Scholar
  41. 41.
    Rausch M, Baumann D, Neubacher U, Rudin M. In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO. NMR Biomed 2002;15: 278–283.CrossRefPubMedGoogle Scholar
  42. 42.
    Saleh A, Wiedermann D, Schroeter M, Jonkmanns C, Jander S, Hoehn M. Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging. NMR Biomed 2004;17: 163–169.CrossRefPubMedGoogle Scholar
  43. 43.
    Schroeter M, Saleh A, Wiedermann D, Hoehn M, Jander S. Histochemical detection of ultrasmall superparamagnetic iron oxide (USPIO) contrast medium uptake in experimental brain ischemia. Magn Reson Med 2004;52: 403–406.CrossRefPubMedGoogle Scholar
  44. 44.
    Kleinschnitz C, Bendszus M, Frank M, Solymosi L, Toyka KV, Stoll G. In vivo monitoring of macrophage infiltration in experimental ischemic brain lesions by magnetic resonance imaging. J Cereb Blood Flow Metab 2003;23: 1356–1361.CrossRefPubMedGoogle Scholar
  45. 45.
    Wiart M, Davoust N, Pialat JB, et al. MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke 2007;38: 131–137.CrossRefPubMedGoogle Scholar
  46. 46.
    Saleh A, Schroeter M, Jonkmanns C, Hartung HP, Mödder U, Jander S. In vivo MRI of brain inflammation in human ischaemic stroke. Brain 2004;127: 1670–1677.CrossRefPubMedGoogle Scholar
  47. 47.
    Nighoghossian N, Wiart M, Cakmak S, et al. Inflammatory response after ischemic stroke: a USPIO-enhanced MRI study in patients. Stroke 2007;38: 303–307.CrossRefPubMedGoogle Scholar
  48. 48.
    Stoll G, Jander S, Schroeter M. Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J Neural Transm Suppl 2000;59: 81–89.PubMedGoogle Scholar
  49. 49.
    Jander S, Schroeter M, Saleh A. Imaging inflammation in acute brain ischemia. Stroke 2007;38: 642–645.CrossRefPubMedGoogle Scholar
  50. 50.
    Gerhard A, Schwarz J, Myers R, Wise R, Banati RB. Evolution of microglial activation in patients after ischemic stroke: a [1c](r)-pk11195 PET study. Neuroimage 2005;24: 591–595.CrossRefPubMedGoogle Scholar
  51. 51.
    Zimmer C, Weissleder R, Poss K, Bogdanova A, Wright SC Jr, Enochs WS. MR imaging of phagocytosis in experimental gliomas. Radiology 1995;197: 533–538.PubMedGoogle Scholar
  52. 52.
    Varallyay P, Nesbit G, Muldoon LL, et al. Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am J Neuroradiol 2002;23: 510–519.PubMedGoogle Scholar
  53. 53.
    Neuwelt EA, Varallyay P, Bago AG, Muldoon LL, Nesbit G, Nixon R. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol Appl Neurobiol 2004;30: 456–471.CrossRefPubMedGoogle Scholar
  54. 54.
    Murillo TP, Sandquist C, Jacobs PM, Nesbit G, Manninger S, Neuwelt EA. Imaging brain tumors with ferumoxtran-10, a nano-particle magnetic resonance contrast agent. Therapy 2005;2(6): 871–882.CrossRefGoogle Scholar
  55. 55.
    Taschner CA, Wetzel SG, Tolnay M, Froehlich J, Merlo A, Radue EW. Characteristics of ultrasmall superparamagnetic iron oxides in patients with brain tumors. AJR 2005;185: 1477–1486.CrossRefPubMedGoogle Scholar

Copyright information

© Springer New York 2007

Authors and Affiliations

  • Klaus G. Petry
    • 1
  • Claudine Boiziau
    • 1
  • Vincent Dousset
    • 1
  • Bruno Brochet
    • 1
  1. 1.EA2966 Neurobiology of Myelin Diseases LaboratoryUniversity of Bordeaux 2BordeauxFrance

Personalised recommendations