Neurotherapeutics

, Volume 4, Issue 3, pp 443–452 | Cite as

Positron emission tomography imaging of neuroinflammation

  • Annachiara Cagnin
  • Michael Kassiou
  • Steve R. Meikle
  • Richard B. Banati
Article

Summary

In the diseased brain, upon activation microglia express binding sites for synthetic ligands designed to recognize the 18-kDa translocator protein TP-18, which is part of the so-called peripheral benzodiazepine receptor complex. PK11195 [1-(2-chlorophenyl)-N-methyl-N- (1-methylpropyl)-3-isoquinoline carboxamide], the prototype synthetic ligand, has been widely used for the functional characterization of TP-18. Its cellular source in activated microglia has been established using high-resolution, single-cell autoradiography with the R-enantiomer [3H](R)-PK11195. Radiolabeled [11C](R)-PK11195 has been used to image active brain disease with positron emission tomography. Consistent with experimental and postmortem observations of a characteristically distributed pattern of microglia activation in areas of focal pathology, as well as in anterograde and retrograde projection areas, the in vivo regional [11C](R)-PK11195 signal is found in active focal lesions and over time also along the affected neural tracts and their respective cortical and subcortical projection areas. Thus, a profile of active disease emerges that matches some of the typical distribution patterns known from structural neuroimaging techniques, but additionally shows involvement of brain regions linked through neural pathways. In the context of cell-based in vivo neuropathology, the image data are thus best interpreted in the context of the emerging cellular understanding of brain disease or damage, rather than the definitions of clinical diagnosis. One important observation, borne out by experiment, is the long latency with which activated microglia or increased PK11195 retention appear to gradually emerge and remain in distal areas secondarily affected by disease, supporting speculations that the presence of activated microglia is an important corollary of brain plasticity.

Key Words

Peripheral benzodiazepine receptor PBR PK11195 microglia neuroinflammation PET brain 

References

  1. 1.
    Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. TINS 1996;19: 312–318.PubMedGoogle Scholar
  2. 2.
    Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308: 1314–1318.CrossRefPubMedGoogle Scholar
  3. 3.
    Davalos D, Grutzendler J, Jang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8: 752–758.CrossRefPubMedGoogle Scholar
  4. 4.
    Graeber MB. Glial inflammation in neurodegenerative diseases [abstract]. Immunology 2001;101(Suppl 1): 52.Google Scholar
  5. 5.
    Cagnin A, Taylor-Robinson SD, Forton DM, Banati RB. In vivo imaging of cerebral “peripheral benzodiazepine binding sites” in patients with hepatic encephalopathy. Gut 2006;55: 547–553.CrossRefPubMedGoogle Scholar
  6. 6.
    Banati RB, Cagnin A, Brooks DJ, et al. Long-term trans-synaptic glial responses in the human thalamus after peripheral nerve injury. Neuroreport 2001;12: 3439–3442.CrossRefPubMedGoogle Scholar
  7. 7.
    Banati RB. Brain plasticity and microglia: is transsynaptic glial activation in the thalamus after limb denervation linked to cortical plasticity and central sensitisation? J Physiol Paris 2002;96: 289–299.CrossRefPubMedGoogle Scholar
  8. 8.
    Banati RB, Gehrmann J, Schubert P, Kreutzberg GW. Cytotoxicity of microglia. Glia 1993;7: 111–118.CrossRefPubMedGoogle Scholar
  9. 9.
    Banati RB, Graeber MB. Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev Neurosci 1994; 16: 114–127.CrossRefPubMedGoogle Scholar
  10. 10.
    Raivich G, Banati R. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev 2004;46: 261–281.CrossRefPubMedGoogle Scholar
  11. 11.
    Duke DC, Moran LB, Turkheimer F, Banati RB, Graeber MB. Microglia in culture: what genes do they express? Dev Neurosci 2004;26: 30–37.CrossRefPubMedGoogle Scholar
  12. 12.
    Moran LB, Duke DC, Turkheimer FE, Banati RB, Graeber MB. Towards a transcriptome definition of microglial cells. Neurogenetics 2004;5: 95–108.CrossRefPubMedGoogle Scholar
  13. 13.
    Banati RB. Visualising microglial activation in vivo. Glia 2002; 40: 206–217.CrossRefPubMedGoogle Scholar
  14. 14.
    Hertz L. Binding characteristics of the receptor and coupling to transport proteins. In: Giessen-Crouse E, editor. Peripheral benzodiazepine receptors. London: Academic Press, 1993: 27–51.Google Scholar
  15. 15.
    Anholt RR, Pedersen PL, De Souza EB, Snyder SH. The peripheral-type benzodiazepine receptor: localization to the mitochondrial outer membrane. J Biol Chem 1986;261: 576–583.PubMedGoogle Scholar
  16. 16.
    Olson JM, McNeel W, Young AB, Mancini WR. Localization of the peripheral-type benzodiazepine binding site to mitochondria of human glioma cells. J Neurooncol 1992;13: 35–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Benavides J, Comu P, Dennis T, et al. Imaging of human brain lesions with an omega-3 site radioligand. Ann Neurol 1988;24: 708–712.CrossRefPubMedGoogle Scholar
  18. 18.
    Myers R, Manjil LG, Cullen BM, Price GW, Frackowiak RSJ, Cremer JE. Macrophage and astrocyte populations in relation to [3H]PK 11195 binding in rat brain cortex following a local ischaemic lesion. J Cereb Blood Flow Metab 1991;11: 314–332.PubMedGoogle Scholar
  19. 19.
    Conway EL, Gundlach AL, Craven JA. Temporal changes in glial fibrillary acidic protein messenger RNA and [3H]PK11195 binding in relation to imidazoline-I2-receptor and alpha 2-adrenoceptor binding in the hippocampus following transient global forebrain ischaemia in the rat. Neuroscience 1998;82: 805–817.CrossRefPubMedGoogle Scholar
  20. 20.
    Itzhak Y, Baker L, Norenberg MD. Characterization of the peripheral-type benzodiazepine receptors in cultured astrocytes: evidence for multiplicity. Glia 1993;9: 211–218.CrossRefPubMedGoogle Scholar
  21. 21.
    Banati RB, Myers R, Kreutzberg GW. PK (‘peripheral benzodiazepine’)-binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 1997;26: 77–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Veenman L, Levin E, Weisinger G, et al. Peripheral-type benzodiazepine receptor density and in vitro tumorigenicity of glioma cell lines. Biochem Pharmacol 2004;68: 689–698.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee DH, Kang SK, Lee RH, et al. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells. J Cell Physiol 2004;198: 91–99.CrossRefPubMedGoogle Scholar
  24. 24.
    Gavish M, Bachman I, Shoukrun R, et al. Enigma of the peripheral benzodiazepine receptor. Pharmacol Rev 1999;51: 629–650.PubMedGoogle Scholar
  25. 25.
    Papadopoulos V, Baraldi M, Guilarte TR, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 2006;27: 402–409.CrossRefPubMedGoogle Scholar
  26. 26.
    Cleary J, Johnson KM, Opipari AW Jr, Glick GD. Inhibition of mitochondrial F1F0-ATPase by ligands of the peripheral benzodiazepine receptor. Bioorg Med Chem Lett 2007;17: 1667–1670.CrossRefPubMedGoogle Scholar
  27. 27.
    Banati RB, Newcombe J, Gunn RN, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo-imaging of microglia as a measure of disease activity. Brain 2000;123: 2321–2337.CrossRefPubMedGoogle Scholar
  28. 28.
    Stephenson DT, Schober DA, Smalstig EB, Mincy RC, Gehlert DR, Clemens JA. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci 1995;15: 5263–5274.PubMedGoogle Scholar
  29. 29.
    Rao VL, Dogan A, Bowen KK, Dempsey RJ. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol 2000;16;102–114.Google Scholar
  30. 30.
    Kuhlmann AC, Guilarte TR. Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. J Neurochem 2000;4: 1694–1704.Google Scholar
  31. 31.
    Chen MK, Baidoo K, Verina T, Guilarte TR. Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization. Brain 2004;127: 1379–1392.CrossRefPubMedGoogle Scholar
  32. 32.
    Banati RB, Goerres GW, Myers R, Gunn RN, Turkheimer FE, Kieutzberg GW, et al. [11C](R)-PK11195 PET-imaging of activated microglia in vivo in Rasmussen’s encephalitis. Neurology 1999;53: 2199–2203.PubMedGoogle Scholar
  33. 33.
    Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4: 153–158.CrossRefPubMedGoogle Scholar
  34. 34.
    Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 1997;6: 279–287.CrossRefPubMedGoogle Scholar
  35. 35.
    Ashburner J, Haslam J, Taylor C, Cunningham V, Jones T. A cluster analysis approach for the characterization of dynamic PET data. In: Myers R, Cunningham V, Bailey D, Jones T, editors. Quantification of brain function using PET. San Diego: Academic Press, 1996: 301–306.CrossRefGoogle Scholar
  36. 36.
    Acton PD, Pilowsky LS, Costa DC, Ell PJ. Multivariate cluster analysis of dynamic iodine-123 iodobenzamide SPET dopamine D2 receptor images in schizophrenia. Eur J Nucl Med 1997;2: 111–118.CrossRefGoogle Scholar
  37. 37.
    Gunn RN, Lammertsma AA, Cunningham VJ. Parametric imaging of ligand-receptor interactions using a reference tissue model and cluster analysis. In: Carson R, Daule M, Witherspoon P, Herscovitch P, editors. Quantitative functional brain imaging with positron emission tomography. San Diego: Academic Press, 1998: 401–406.CrossRefGoogle Scholar
  38. 38.
    Myers R, Gunn RN, Cunningham V, Banati RB, Jones T. Cluster analysis and the reference tissue model in the analysis of clinical [11C](R)-PK11195 PET [Abstract]. J Cereb Blood Flow Metab 1999;19(Suppl): S789.Google Scholar
  39. 39.
    Cagnin A, Myers R, Gunn RN, et al. In vivo visualization of activated glia by [11C](R)-PK11195 PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion. Brain 2001;124: 2014–2027.CrossRefPubMedGoogle Scholar
  40. 40.
    Turkheimer FE, Edison P, Pavese N, et al. Reference and target region modeling of [11C](R)-PK11195 brain studies. J Nucl Med 2007;48: 158–167.PubMedGoogle Scholar
  41. 41.
    Rasmussen T, Andermann F. Rasmussen’s syndrome: symptomatology of the syndrome of chronic encephalitis and seizures: 35-year experience with 51 cases. In: Lüders H, editor. Epilepsy surgery, 1st ed. New York: Raven Press, 1991: 173–182.Google Scholar
  42. 42.
    Oguni H, Andermann F, Rasmussen TB. The syndrome of chronic encephalitis and epilepsy: a study based on the MNI series of 48 cases. Adv Neurol 1992;57: 419–433.PubMedGoogle Scholar
  43. 43.
    McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 1995;21: 195–218.CrossRefPubMedGoogle Scholar
  44. 44.
    Ouchi Y, Yoshikawa E, Sekine Y, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 2005;57;168–175.CrossRefPubMedGoogle Scholar
  45. 45.
    Gerhard A, Pavese N, Hotton G, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 2006;21;404–412.CrossRefPubMedGoogle Scholar
  46. 46.
    Gerhard A, Banati RB, Goerres GB, et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology 2003;61: 686–689.PubMedGoogle Scholar
  47. 47.
    Gerhard A, Trender-Gerhard I, Turkheimer F, Quinn NP, Bhatia KP, Brooks DJ. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in progressive supranuclear palsy. Mov Disord 2006;21: 89–93.CrossRefPubMedGoogle Scholar
  48. 48.
    Gerhard A, Watts J, Trender-Gerhard I, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in corticobasal degeneration. Mov Disord 2004;19: 1221–1226.CrossRefPubMedGoogle Scholar
  49. 49.
    Imamura K, Hishikawa N, Sawada M, et al. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol (Berl) 2003;106: 518–526.CrossRefGoogle Scholar
  50. 50.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24: 197–211.CrossRefPubMedGoogle Scholar
  51. 51.
    Sapp E, Kegel KB, Aronin N, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 2001;60: 161–172.PubMedGoogle Scholar
  52. 52.
    Pavese N, Gerhard A, Tai YF, et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study Neurology 2006;66: 1638–1643.CrossRefPubMedGoogle Scholar
  53. 53.
    Tai YF, Pavese N, Gerhard A, et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 2007 Mar 30 [Epub ahead of print].Google Scholar
  54. 54.
    Veerhuis R, Hoozemans JJM, Cagnin A, Eikelemboom P, Banati RB. The activation of microglia as an early sign of disease progression in Alzheimer’s disease. In: Kettenmann H, Ransom BR, editors. Neuroglia, 2nd ed. New York: Oxford University Press, 2004: 1027–1043.Google Scholar
  55. 55.
    Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000;21: 383–421.CrossRefPubMedGoogle Scholar
  56. 56.
    Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001;358: 461–467 Erratum in: Lancet 2001;358:766].CrossRefPubMedGoogle Scholar
  57. 57.
    Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400: 173–177.CrossRefPubMedGoogle Scholar
  58. 58.
    Cagnin A, Rossor M, Sampson EL, MacKinnon T, Banati RB. In vivo detection of microglia activation in frontotemporal dementia. Ann Neurol 2004;56: 894–897.CrossRefPubMedGoogle Scholar
  59. 59.
    Gerhard A, Schwarz J, Myers R, Wise R, Banati RB. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 2005;24: 591–595.CrossRefPubMedGoogle Scholar
  60. 60.
    Rice CS, Wang D, Menon DK, et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke 2006;37: 1749–1753.CrossRefGoogle Scholar
  61. 61.
    Pappata S, Levasseur M, Gunn RN, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK11195. Neurology 2000;55: 1052–1054.PubMedGoogle Scholar
  62. 62.
    Sobel RA, Collins AB, Colvin RB, Bhan AK. The in situ cellular autoimmune response in acute herpes simplex encephalitis. Am J Pathol 1986;125: 332–338.PubMedGoogle Scholar
  63. 63.
    Esiri MM, Drummond CW, Morris CS. Macrophages and microglia in HSV-1 infected mouse brain. J Neuroimmunol 1995;62: 201–205.CrossRefPubMedGoogle Scholar
  64. 64.
    Jones EG. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci 2000;23: 1–37.CrossRefPubMedGoogle Scholar
  65. 65.
    Kassiou M, Meikle SR, Banati RB. Ligands for peripheral benzodiazepine binding sites in glial cells. Brain Res Brain Res Rev 2005;48: 207–210.CrossRefPubMedGoogle Scholar
  66. 66.
    Maeda J, Suhara T, Zhang MR, et al. Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: an imaging tool for glial cells in the brain. Synapse 2004;52: 283–291.CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang MR, Kida T, Noguchi J, et al. [11C]DAA1106: radiosynthesis and in vivo binding to peripheral benzodiazepine receptors in mouse brain. Nucl Med Biol 2003;30: 513–519.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhang MR, Maeda J, Ogawa M, et al. Development of a new radioligand, N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl) acetamide, for PET imaging of peripheral benzodiazepine receptor in primate brain. J Med Chem 2004;22: 2228–2235.CrossRefGoogle Scholar
  69. 69.
    Fujimura Y, Ikoma Y, Yasuno F, et al. Quantitative analyses of 18 F-FEDAA1106 binding to peripheral benzodiazepine receptors in living human brain. J Nucl Med 2006;47: 43–50.PubMedGoogle Scholar
  70. 70.
    Gulyas B, Halldin C, Sandell J, et al. PET studies on the brain uptake and regional distribution of [11C]vinpocetine in human subjects. Acta Neurol Scand 2002; 106: 325–332.CrossRefPubMedGoogle Scholar
  71. 71.
    Gulyas B, Halldin C, Vas A, et al. [11C] Vinpocetine: a prospective peripheral benzodiazepine receptor ligand for primate PET studies. J Neurol Sci 2005;15: 219–223.CrossRefGoogle Scholar
  72. 72.
    Belloli S, Moresco RM, Matarrese M, et al. Evaluation of three quinoline-carboxamide derivatives as potential radioligands for the in vivo PET imaging of neurodegeneration. Neurochem Int 2004; 44: 433–440.CrossRefPubMedGoogle Scholar
  73. 73.
    James ML, Fulton RR, Henderson DJ, et al. Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. Bioorg Med Chem 2005;13: 6188–6194.CrossRefPubMedGoogle Scholar

Copyright information

© Springer New York 2007

Authors and Affiliations

  • Annachiara Cagnin
    • 1
    • 2
  • Michael Kassiou
    • 3
    • 4
    • 5
  • Steve R. Meikle
    • 3
    • 4
  • Richard B. Banati
    • 3
    • 4
  1. 1.Department of NeuroscienceUniversity of PadovaPadovaItaly
  2. 2.I.R.C.C.S. San Camillo HospitalVeniceItaly
  3. 3.Ramaciotti Centre for Brain Imaging, Brain-Mind Research InstituteUniversity of SydneyCamperdownAustralia
  4. 4.Discipline of Medical Radiation SciencesUniversity of SydneyLidcombeAustralia
  5. 5.School of ChemistryUniversity of SydneyAustralia

Personalised recommendations