Neurotherapeutics

, Volume 4, Issue 2, pp 274–284 | Cite as

Familial hemiplegic migraine

Article

Summary

Familial hemiplegic migraine (FHM) is a rare and genetically heterogeneous autosomal dominant subtype of migraine with aura. Mutations in the genes CACNA1A and SCNA1A, encoding the pore-forming α1 subunits of the neuronal voltage-gated Ca2+ channels Cav2.1 and Na+ channels Nav1.1, are responsible for FHM1 and FHM3, respectively, whereas mutations in ATP1A2, encoding the α2 subunit of the Na+, K+ adenosinetriphosphatase (ATPase), are responsible for FHM2. This review discusses the functional studies of two FHM1 knockin mice and of several FHM mutants in heterologous expression systems (12 FHM1, 8 FHM2, and 1 FHM3). These studies show the following: (1) FHM1 mutations produce gain-of-function of the Cav2.1 channel and, as a consequence, increased Cav2.1-dependent neurotransmitter release from cortical neurons and facilitation of in vivo induction and propagation of cortical spreading depression (CSD: the phenomenon underlying migraine aura); (2) FHM2 mutations produce loss-of-function of the α2 Na+,K+-ATPase; and (3) the FHM3 mutation accelerates recovery from fast inactivation of Nav1.5 (and presumably Nav1.1) channels. These findings are consistent with the hypothesis that FHM mutations share the ability of rendering the brain more susceptible to CSD by causing either excessive synaptic glutamate release (FHM1) or decreased removal of K+ and glutamate from the synaptic cleft (FHM2) or excessive extracellular K+ (FHM3). The FHM data support a key role of CSD in migraine pathogenesis and point to cortical hyperexcitability as the basis for vulnerability to CSD and to migraine attacks. Hence, they support novel therapeutic strategics that consider CSD and cortical hyperexcitability as key targets for preventive migraine treatment.

Key Words

Migraine cortical spreading depression Ca2+ channel Na+ K+ ATPase Na+ channel epilepsy 

References

  1. 1.
    Pictrobon D, Stricssnig J. Neurobiology of migraine. Nat Rev Neurosci 2003;4: 386–398.CrossRefGoogle Scholar
  2. 2.
    Pictrobon D. Migraine: new molecular mechanisms. Neuroscientist 2005; 11: 373–386.CrossRefGoogle Scholar
  3. 3.
    Wessman M, Kaunisto MA, Kallela M, Palotic A. The molecular genetics of migraine. Ann Med 2004;36: 462–473.CrossRefPubMedGoogle Scholar
  4. 4.
    Kors EE, Vanmolkot KR, Haan J, Fiants RR, van den Maagdenberg AM, Ferrari MD. Recent findings in headache genetics. Curr Opin Neurol 2004;17: 283–288.CrossRefPubMedGoogle Scholar
  5. 5.
    Thomsen LL, Eriksen MK, Roemer SF, Andersen I, Olesen J, Russell MB. A population-based study of familial hemiplegic migraine suggests revised diagnostic criteria. Brain 2002;125: 1379–1391.CrossRefPubMedGoogle Scholar
  6. 6.
    Thomsen LL, Olesen J, Russell MB. Increased risk of migraine with typical aura in probands with familial hemiplegic migraine and their relatives. Eur J Neurol 2003;10: 421–427.CrossRefPubMedGoogle Scholar
  7. 7.
    Ducros A, Denicr C, Joutel A, et al. The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 2001;345: 17–24.CrossRefPubMedGoogle Scholar
  8. 8.
    Ducros A, Joutel A, Vahedi K, et al. Mapping of a second locus for familial hemiplegic migraine to 1q21-q23 and evidence of further heterogeneity. Ann Neurol 1997;42: 885–890.CrossRefPubMedGoogle Scholar
  9. 9.
    Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996;87: 543–552.CrossRefPubMedGoogle Scholar
  10. 10.
    De Fusco M, Marconi R, Silvestri L, et al. Haploinsufficicncy of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 2003;33: 192–196.CrossRefPubMedGoogle Scholar
  11. 11.
    Dichgans M, Freilinger T, Eckstein G, et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 2005;366: 371–377.CrossRefPubMedGoogle Scholar
  12. 12.
    Thomsen LL, Olesen J. Sporadic hemiplegic migraine. Cephalalgia 2004;24: 1016–1023.CrossRefPubMedGoogle Scholar
  13. 13.
    Kirchmann M, Thomsen LL, Olesen J. The CACNA1A and ATP1A2 genes are not involved in dominantly inherited migraine with aura. Am J Med Genet B Neuropsychiatr Genet 2006;141: 250–256.Google Scholar
  14. 14.
    Netzer C, Todt U, Heinze A, et al. Haplotype-based systematic association studies of ATP1A2 in migraine with aura. Am J Med Genet B Neuropsychiatr Genet 2006;141: 257–260.Google Scholar
  15. 15.
    Todt U, Dichgans M, Jurkat-Rott K, et al. Rare missense variants in ATP1A2 in families with clustering of common forms of migraine. Hum Mutat 2005;26: 315–321.CrossRefPubMedGoogle Scholar
  16. 16.
    Ambrosini A, D’Onofrio M, Grieco GS, et al. Familial basilar migraine associated with a new mutation in the ATP1A2 gene. Neurology 2005;65: 1826–1828.CrossRefPubMedGoogle Scholar
  17. 17.
    Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000; 16: 521–555.CrossRefPubMedGoogle Scholar
  18. 18.
    Cannon SC. Physiologic Principles Underlying Ion Channelopathics. Neurotherapeutics 2007;4: 174–183.CrossRefPubMedGoogle Scholar
  19. 19.
    Haan J, Kors EE, Vanmolkot KR, van den Maagdenberg AM, Fiants RR, Ferrari MD. Migraine genetics: an update. Curr Pain Headache Rep 2005;9: 213–220.CrossRefPubMedGoogle Scholar
  20. 20.
    Dichgans M, Herzog J, Freilinger T, Wilke M, Auer DP. 1H-MRS alterations in the cerebellum of patients with familial hemiplegic migraine type 1. Neurology 2005;64: 608–613.PubMedGoogle Scholar
  21. 21.
    Pictrobon D. Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr Opin Neurobiol 2005;15: 257–265.CrossRefGoogle Scholar
  22. 22.
    Jun K, Picdras-Renteria ES, Smith SM, et al. Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the a1A -subunit. Proc Natl Acad Sci U S A 1999;96: 15245–15250.CrossRefPubMedGoogle Scholar
  23. 23.
    Fletcher CF, Tottene A, Lennon VA, et al. Dystonia and cerebellar atrophy in Cacnala null mice lacking P/Q calcium channel activity. FASEB J 2001;15: 1288–1290.PubMedGoogle Scholar
  24. 24.
    Pictrobon D. Calcium channels and channelopathics of the central nervous system. Mol Neurobiol 2002;25: 31–50.CrossRefGoogle Scholar
  25. 25.
    Luvisetto S, Marinelli S, Panasiti MS, et al. Pain sensitivity in mice lacking the CaV2.1α1 subunit of P/Q-type Ca2+ channels. Neuroscience 2006;142: 823–832.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the a1A-voltage-dependent calcium channel. Nat Genet 1997;15: 62–69.CrossRefPubMedGoogle Scholar
  27. 27.
    Imbrici P, Jaffe SL, Eunson LH, et al. Dysfunction of the brain calcium channel CaV2.1 in absence epilepsy and episodic ataxia. Brain 2004;127: 2682–2692.CrossRefPubMedGoogle Scholar
  28. 28.
    Strupp M, Zwergal A, Brandt T. Episodic ataxia type 2. Neurotherapeutics 2007;4: 267–273.CrossRefPubMedGoogle Scholar
  29. 29.
    Kordasicwicz HB, Gomez CM. Molecular pathogenesis of spinocerebellar ataxia type 6 (SCA6). Neurotherapeutics 2007;4: 285–294.CrossRefGoogle Scholar
  30. 30.
    Mullner C, Broos LA, van den Maagdenberg AM, Stricssnig J. Familial hemiplegic migraine type 1 mutations K1336E, W1684R, and V1696I alter Cav2.1 Ca2+ channel gating: evidence for beta-subunit isoform-specific effects. J Biol Chem 2004;279: 51844–51850CrossRefPubMedGoogle Scholar
  31. 31.
    Tottene A, Fellin T, Pagnutti S, et al. Familial hemiplegic migraine mutations increase Ca2+ influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc Natl Acad Sci U S A 2002;99: 13284–13289.CrossRefPubMedGoogle Scholar
  32. 32.
    Kraus RL, Sinnegger MJ, Glossmann H, Hering S, Stricssnig J. Familial hemiplegic migraine mutations change a1A Ca2+ channel kinetics. J Biol Chem 1998;273: 5586–5590.CrossRefPubMedGoogle Scholar
  33. 33.
    Kraus RL, Sinnegger M, Koschak A, et al. Three new familial hemiplegic migraine mutants affect P/Q-type Ca2+channel kinetics. J Biol Chem 2000;275: 9239–9243.CrossRefPubMedGoogle Scholar
  34. 34.
    Hans M, Luvisetto S, Williams ME, et al. Functional consequences of mutations in the human a1A calcium channel subunit linked to familial hemiplegic migraine. J Neurosci 1999;19: 1610–1619.PubMedGoogle Scholar
  35. 35.
    Tottene A, Pivotto F, Fellin T, Cesetti T, van den Maagdenberg AM, Pictrobon D. Specific kinetic alterations of human CaV2.1 calcium channels produced by mutation S218L causing familial hemiplegic migraine and delayed cerebral edema and coma after minor head trauma. J Biol Chem 2005;280: 17678–17686.CrossRefPubMedGoogle Scholar
  36. 36.
    Melliti K, Grabner M, Seabrook GR. The familial hemiplegic migraine mutation R192Q reduces G-protein-mediated inhibition of P/Q-type (Ca(V)2.1) calcium channels expressed in human embryonic kidney cells. J Physiol 2003;546: 337–347.CrossRefPubMedGoogle Scholar
  37. 37.
    Cao YQ, Piedras-Renteria ES, Smith GB, Chen G, Harata NC, Tsien RW. Presynaptic Ca2+ channels compete for channel type-preferring slots in altered neurotransmission arising from Ca2+ channelopathy. Neuron 2004;43: 387–400.CrossRefPubMedGoogle Scholar
  38. 38.
    Cao YQ, Tsien RW. Effects of familial hemiplegic migraine type 1 mutations on neuronal P/Q-type Ca2+ channel activity and inhibitory synaptic transmission. Proc Natl Acad Sci U S A 2005; 102: 2590–2595.CrossRefPubMedGoogle Scholar
  39. 39.
    van den Maagdenberg AM, Pictrobon D, Pizzorusso T, et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 2004;41: 701–710.CrossRefPubMedGoogle Scholar
  40. 40.
    Shapovalova M, Maticllo S, Tottene A, van den Maagdenberg AM, Pictrobon D. Calcium channel (CaV2.1) knock-in mice with a familial hemiplegic migraine mutation show an increased calcium current density in cortical pyramidal neurons. Thirty-fourth Annual Meeting of the Socicty for Neuroscience: October 23–27, 2004; San Dicgo, CA. Abstract 848.9.Google Scholar
  41. 41.
    Pizzorusso T, Shapovalova M, Gherardini L, et al. Facilitation of neuronal CaV2.1 channels and cortical spreading depression in knockin mice with mutation S218L causing familial hemiplegic migraine and coma after minor head trauma. Thirty-sixth Annual Meeting of the Socicty for Neuroscience: October 14–18, 2006; Atlanta, GA. Abstract 727.1.Google Scholar
  42. 42.
    Fitzsimons RB, Wolfenden WH. Migraine coma. Meningitic migraine with cerebral oedema associated with a new form of autosomal dominant cerebellar ataxia. Brain 1985;108: 555–577.CrossRefPubMedGoogle Scholar
  43. 43.
    Kors EE, Terwindt GM, Vermeulen FL, et al. Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol 2001;49: 753–760.CrossRefPubMedGoogle Scholar
  44. 44.
    Curtain RP, Smith RL, Ovcaric M, Griffiths LR. Minor head trauma-induced sporadic hemiplegic migraine coma. Pediatr Neurol 2006;34: 329–332.CrossRefPubMedGoogle Scholar
  45. 45.
    Kaja S, van de Ven RC, Broos LA, et al. Increased transmitter release at neuromuscular synapses of a novel Cacnala S218L knock-in mouse model for familial hemiplegic migraine. Thirty-fourth Annual Meeting of the Socicty for Neuroscience: October 23–27, 2004; San Dicgo, CA. Abstract 593.4.Google Scholar
  46. 46.
    Kaja S, van de Ven RC, Broos LA, et al. Gene dosage-dependent transmitter release changes at neuromuscular synapses of CACNA1A R192Q knockin mice are non-progressive and do not lead to morphological changes or muscle weakness. Neuroscience 2005;135: 81–95.CrossRefPubMedGoogle Scholar
  47. 47.
    Tottene A, Shapovalova M, Frants RR, Ferrari MD, van den Maagdenberg AM, Pictrobon D. Gain-of-function of CaV2.1 calcium channels leads to increased excitatory synaptic transmission in microcultures of cortical neurons from cacnala knockin mice with the R192Q familial hemiplegic migraine mutation. Thirty-fifth Annual Meeting of the Socicty for Neuroscience: November 12–16, 2005; Washington, DC. Abstract 35.1.Google Scholar
  48. 48.
    Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 2001;81: 1065–1096.PubMedGoogle Scholar
  49. 49.
    Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 2002;8: 136–142.CrossRefPubMedGoogle Scholar
  50. 50.
    Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA. Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol 2006;59: 652–661.CrossRefPubMedGoogle Scholar
  51. 51.
    Sanchez-Del-Rio M, Reuter U, Moskowitz MA. New insights into migraine pathophysiology. Curr Opin Neurol 2006;19: 294–298.CrossRefPubMedGoogle Scholar
  52. 52.
    Dreier JP, Jurkat-Rott K, Petzold GC, et al. Opening of the blood-brain barricr preceding cortical edema in a severe attack of FHM type II. Neurology 2005;64: 2145–2147.CrossRefPubMedGoogle Scholar
  53. 53.
    Gursoy-Ozdemir Y, Qiu J, Matsuoka N, et al. Cortical spreading depression activates and upregulates MMP-9. J Clin Invest 2004; 113: 1447–1455.PubMedGoogle Scholar
  54. 54.
    Ayata C, Shimizu-Sasamata M, Lo EH, Noebels JL, Moskowitz MA. Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the a1A subunit of P/Q type calcium channels. Neuroscience 2000;95: 639–645.CrossRefPubMedGoogle Scholar
  55. 55.
    Marrannes R, Willems R, De Prins E, Wauquicr A. Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res 1988;457: 226–240.CrossRefPubMedGoogle Scholar
  56. 56.
    Somjen GG. Ion regulation in the brain: implications for pathophysiology. Neuroscientist 2002;8: 254–267.PubMedGoogle Scholar
  57. 57.
    Knight YE, Goadsby PJ. The periaqueductal grey matter modulates trigeminovascular input: a role in migraine? Neuroscience 2001; 106: 793–800.CrossRefPubMedGoogle Scholar
  58. 58.
    Vanegas H, Schaible H. Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia. Pain 2000;85: 9–18.CrossRefPubMedGoogle Scholar
  59. 59.
    Knight YE, Bartsch T, Kaube H, Goadsby PJ. P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J Neurosci 2002; 22: RC213PubMedGoogle Scholar
  60. 60.
    Urban MO, Ren K, Sablad M, Park KT. Medullary N-type and P/Q-type calcium channels contribute to neuropathy-induced allodynia. Neuroreport 2005;16: 563–566.CrossRefPubMedGoogle Scholar
  61. 61.
    Akerman S, Williamson DJ, Goadsby PJ. Voltage-dependent calcium channels are involved in neurogenic dural vasodilatation via a presynaptic transmitter release mechanism. Br J Pharmacol 2003; 140: 558–566.CrossRefPubMedGoogle Scholar
  62. 62.
    Jorgensen PL, Hakansson KO, Karlish SJ. Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu Rev Physiol 2003;65: 817–849.CrossRefPubMedGoogle Scholar
  63. 63.
    Vanmolkot KR, Kors EE, Hottenga JJ, et al. Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol 2003;54: 360–366.CrossRefPubMedGoogle Scholar
  64. 64.
    Kaunisto MA, Hamo H, Kallela M, et al. Novel splice site CACNA1A mutation causing episodic ataxia type 2. Neurogenetics 2004;5: 69–73.CrossRefPubMedGoogle Scholar
  65. 65.
    Spadaro M, Ursu S, Lehmann-Horn F, et al. A G301R Na(+)/ K(+)-ATPase mutation causes familial hemiplegic migraine type 2 with cerebellar signs. Neurogenetics 2004;5: 177–185.CrossRefPubMedGoogle Scholar
  66. 66.
    Jurkat-Rott K, Freilinger T, Dreier JP, et al. Variability of familial hemiplegic migraine with novel A1A2 Na+/K+-ATPase variants. Neurology 2004;62: 1857–1861.PubMedGoogle Scholar
  67. 67.
    Riant F, De Fusco M, Aridon P, et al. ATP1A2 mutations in 11 families with familial hemiplegic migraine. Hum Mutat 2005;26: 281.CrossRefPubMedGoogle Scholar
  68. 68.
    Vanmolkot KR, Kors EE, Turk U, et al. Two de novo mutations in the Na,K-ATPase gene ATP1A2 associated with pure familial hemiplegic migraine. Eur J Hum Genet 2006; 14: 555–560.CrossRefPubMedGoogle Scholar
  69. 69.
    Vanmolkot KR, Stroink H, Koenderink JB, et al. Severe episodic neurological deficits and permanent mental retardation in a child with a novel FHM2 ATP1A2 mutation. Ann Neural 2006;59: 310–314.CrossRefGoogle Scholar
  70. 70.
    Picrelli F, Grieco GS, Pauri F, et al. A novel ATP1A2 mutation in a family with FHM type II. Cephalalgia 2006;26: 324–328.CrossRefGoogle Scholar
  71. 71.
    Bassi MT, Bresolin N, Tonelli A, et al. A novel mutation in the ATP1A2 gene causes alternating hemiplegia of childhood. J Med Genet 2004;41: 621–628.CrossRefPubMedGoogle Scholar
  72. 72.
    Swoboda KJ, Kanavakis E, Xaidara A, et al. Alternating hemiplegia of childhood or familial hemiplegic migraine? A novel ATP1A2 mutation. Ann Neural 2004;55: 884–887.CrossRefGoogle Scholar
  73. 73.
    D’Ambrosio R, Gordon DS, Winn HR. Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus. J Neurophysiol 2002;87: 87–102.PubMedGoogle Scholar
  74. 74.
    Ransom CB, Ransom BR, Sontheimer H. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 2000;522: 427–442.CrossRefPubMedGoogle Scholar
  75. 75.
    Lingrel J, Moseley A, Dostanic I, et al. Functional roles of the alpha isoforms of the Na,K-ATPase. Ann N Y Acad Sci 2003;986: 354–359.CrossRefPubMedGoogle Scholar
  76. 76.
    Moseley AE, Licske SP, Wetzel RK, et al. The Na,K-ATPase alpha 2 isoform is expressed in neurons, and its absence disrupts neuronal activity in newborn mice. J Biol Chem 2003;278: 5317–5324.CrossRefPubMedGoogle Scholar
  77. 77.
    McGrail KM, Phillips JM, Sweadner KJ. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na,K-ATPase. J Neurosci 1991;11: 381–391.PubMedGoogle Scholar
  78. 78.
    Cholet N, Pellerin L, Magistretti PJ, Hamel E. Similar perisynaptic glial localization for the Na+,K+-ATPase alpha 2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb Cortex 2002;12: 515–525.CrossRefPubMedGoogle Scholar
  79. 79.
    Ikeda K, Onaka T, Yamakado M, et al. Degeneration of the amygdala/piriform cortex and enhanced fear/anxicty behaviors in sodium pump alpha2 subunit (Atpla2)-deficicnt mice. J Neurosci 2003;23: 4667–4676.PubMedGoogle Scholar
  80. 80.
    Ikeda K, Onimaru H, Yamada J, et al. Malfunction of respiratory-related neuronal activity in Na+, K+-ATPase alpha2 subunit-deficicnt mice is attributable to abnormal Cl-homeostasis in brain-stem neurons. J Neurosci 2004;24: 10693–10701.CrossRefPubMedGoogle Scholar
  81. 81.
    Juhaszova M, Blaustein MP. Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. Proc Natl Acad Sci U S A 1997;94: 1800–1805.CrossRefPubMedGoogle Scholar
  82. 82.
    Golovina VA, Song H, James PF, Lingrel JB, Blaustein MP. Na+ pump alpha 2-subunit expression modulates Ca2+ signaling. Am J Physiol Cell Physiol 2003;284: C475–486.PubMedGoogle Scholar
  83. 83.
    Pellerin L, Magistretti PJ. Glutamate uptake stimulates Na+,K+-ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. J Neurochem 1997;69: 2132–2137.CrossRefPubMedGoogle Scholar
  84. 84.
    Segall L, Scanzano R, Kaunisto MA, et al. Kinetic alterations due to a missense mutation in the Na,K-ATPase alpha2 subunit cause familial hemiplegic migraine type 2. J Biol Chem 2004;279: 43692–43696.CrossRefPubMedGoogle Scholar
  85. 85.
    Segall L, Mezzetti A, Scanzano R, Gargus JJ, Purisima E, Blostein R. Alterations in the alpha2 isoform of Na,K-ATPase associated with familial hemiplegic migraine type 2. Proc Natl Acad Sci U S A 2005;102: 11106–11111.CrossRefPubMedGoogle Scholar
  86. 86.
    Koenderink JB, Zifarelli G, Qiu LY, et al. Na,K-ATPase mutations in familial hemiplegic migraine lead to functional inactivation. Biochim Biophys Acta 2005;1669: 61–68.CrossRefPubMedGoogle Scholar
  87. 87.
    Meisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 2005;115: 2010–2017.CrossRefPubMedGoogle Scholar
  88. 88.
    Gong B, Rhodes KJ, Bekele-Arcuri Z, Trimmer JS. Type I and type II Na(+) channel alpha-subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain. J Comp Neurol 1999;412: 342–352.CrossRefPubMedGoogle Scholar
  89. 89.
    Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic intemeurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 2006;9: 1142–1149.CrossRefPubMedGoogle Scholar
  90. 90.
    Johnston D, Magee JC, Colbert CM, Cristic BR. Active propertics of neuronal dendrites. Annu Rev Neurosci 1996;19: 165–186.CrossRefPubMedGoogle Scholar
  91. 91.
    Heron SE, Scheffer IE, Berkovic SF, Dibbens LM, Mulley JC. Channelopathics in idiopathic epilepsy. Neurotherapeutics 2007;4: 295–304.CrossRefPubMedGoogle Scholar
  92. 92.
    Cummins TR, Aglicco F, Renganathan M, Herzog RI, Dib-Hajj SD, Waxman SG. Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J Neurosci 2001;21: 5952–5961.PubMedGoogle Scholar
  93. 93.
    Goadsby PJ. Migraine, aura, and cortical spreading depression: why are we still talking about it? Ann Neurol 2001;49: 4–6.CrossRefPubMedGoogle Scholar
  94. 94.
    May A, Goadsby PJ. The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab 1999;19: 115–127.CrossRefPubMedGoogle Scholar
  95. 95.
    Welch KM. Brain hyperexcitability: the basis for anticpileptic drugs in migraine prevention. Headache 2005;45(suppl 1): S25–32.CrossRefPubMedGoogle Scholar
  96. 96.
    Ambrosini A, Schoenen J. The electrophysiology of migraine. Curr Opin Neurol 2003;16: 327–331.CrossRefPubMedGoogle Scholar
  97. 97.
    Moskowitz MA, Bolay H, Dalkara T. Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes. Ann Neurol 2004;55: 276–280.CrossRefPubMedGoogle Scholar
  98. 98.
    Smith MI, Read SJ, Chan WN, et al. Repetitive cortical spreading depression in a gyrencephalic feline brain: inhibition by the novel benzoylamino-benzopyran SB-220453. Cephalalgia 2000;20: 546–553.CrossRefPubMedGoogle Scholar

Copyright information

© Springer New York 2007

Authors and Affiliations

  1. 1.Dept. Biomedical ScicncesUniversity of PadovaPadovaItaly

Personalised recommendations