Neurotherapeutics

, Volume 4, Issue 2, pp 199–204

Challenges in the design and conduct of therapeutic trials in channel disorders

  • Shannon L. Venance
  • Barbara E. Herr
  • Robert C. Griggs
Article

Summary

Neurologic channelopathies are rare, inherited paroxysmal disorders of muscle (e.g., the periodic paralyses and nondystrophic myotonias) and brain (e.g., episodic ataxias, idiopathic epilepsies, and familial hemiplegic migraine). Mutation is necessary but not sufficient for phenotypic expression and there are no simple phenotype-genotype relationships. Attacks may be spontaneous or triggered, with affected individuals often asymptomatic and neurologic ally normal between attacks. Performance of daily activities may be affected by the unpredictable nature; often late-onset degenerative changes cause permanent disability; for example, muscle atrophy and fixed weakness in periodic paralysis and cerebellar atrophy and progressive ataxia in the episodic ataxias. Currently, the natural history of these disorders is being defined. Clearly, the established methodologies for randomized controlled clinical trials are not feasible for rare diseases and innovative trial design is essential. There is a requirement for clinically relevant outcome measures for episodic disorders. Increasing our knowledge of the pathophysiology will help in targeting and designing rational therapeutic approaches. We will use the current understanding of the neurological channelopathies to illustrate some of the opportunities, challenges, and strategies in bringing safe and effective treatments to patients. There are reasons for optimism that new partnerships between clinical investigators, government, patient advocacy groups, and industry will prevent symptoms and progression of the neurological channelopathies.

Key Words

Neurological channelopathies trial design outcome measures rare diseases n-of-1 studies 

References

  1. 1.
    Griggs RC, Engel WK, Resnick JS. Acetazolamide treatment of hypokalemic periodic paralysis. Prevention of attacks and improvement of persistent weakness. Ann Intern Med 1970;73: 39–48.PubMedGoogle Scholar
  2. 2.
    Dalakas MC, Engel WK. Treatment of “permanent” muscle weakness in familial hypokalemic periodic paralysis. Muscle Nerve 1983;6: 182–186.CrossRefPubMedGoogle Scholar
  3. 3.
    Tawil R, Cannon S. Neurologic channelopothies: Evolving concepts and therapeutic challenges. Neurotherapeutics 2007;4: 173.CrossRefGoogle Scholar
  4. 4.
    Cannon SC. Physiologic principles underlying ion channelopothies. Neurotherapeutics 2007;4: 174–183.CrossRefPubMedGoogle Scholar
  5. 5.
    Griggs RC. Developing new treatments for muscle disease: prospects and promise. Curr Opin Neurol 1994;7: 422–426.CrossRefPubMedGoogle Scholar
  6. 6.
    Haffner ME. Adopting orphan drugs—two dozen years of treating rare diseases. N Engl J Med 2006;354: 445–447.CrossRefPubMedGoogle Scholar
  7. 7.
    Wastfelt M, Fadeel B, Henter J-I. A journey of hope: lessons learned from studies on rare diseases and orphan drugs. J Intern Med 2006;260: 1–10.CrossRefPubMedGoogle Scholar
  8. 8.
    Venance SL, Cannon SC, Fialho D, et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain 2006;129: 8–17.CrossRefPubMedGoogle Scholar
  9. 9.
    Moxley RT III. Channelopathies. Curr Treat Options Neurol 2000; 2: 31–47.CrossRefGoogle Scholar
  10. 10.
    Lagakos SW. Clinical trials and rare diseases. N Engl J Med 2003;348: 2455–2456.CrossRefPubMedGoogle Scholar
  11. 11.
    Guyatt G, Sackett D, Taylor DW, Chong J, Roberts R, Pugsley S. Determining optimal therapy—randomized trials in individual patients. N Engl J Med 1986;314: 889–892.CrossRefPubMedGoogle Scholar
  12. 12.
    Sung L, Feldman BM. N-of-1 trials: innovative methods to evaluate complementary and alternative medicines in pediatric cancer. J Pediatr Hematol Oncol 2006;28: 263–266.CrossRefPubMedGoogle Scholar
  13. 13.
    Wiebe S, Guyatt G, Weaver B, Matijevic S, Sidwell C. Comparative responsiveness of generic and specific quality-of-life instruments. J Clin Epidemiol 2003;56: 52–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Tawil R, McDermott MP, Brown R Jr, et al. Randomized trials of dichlorphenamide in the periodic paralyses. Working Group on Periodic Paralysis. Ann Neurol 2000;47: 46–53.CrossRefPubMedGoogle Scholar
  15. 15.
    Burgess DL. Neonatal epilepsy syndromes and GEFS+: mechanistic considerations. Epilepsia 2005;46(suppl 10): 51–58.CrossRefPubMedGoogle Scholar
  16. 16.
    Sansone V, Griggs RC, Meola G, et al. Andersen’s syndrome: a distinct periodic paralysis. Ann Neurol 1997;42: 305–312.CrossRefPubMedGoogle Scholar
  17. 17.
    Sansone V, Tawil R. Management and treatment of Andersen-Tawil Syndrome (ATS). Neurotherapeutics 2007;4: 233–237.CrossRefPubMedGoogle Scholar
  18. 18.
    Jen J, Kim GW, Baloh RW. Clinical spectrum of episodic ataxia type 2. Neurology 2004;62: 17–22.PubMedGoogle Scholar
  19. 19.
    Rajakulendran S, Schorge S, Kullman DM, Hanna MG. Episodic ataxia type 1: Neuronal potassium channelopathy. Neurotherapeutics 2007;4: 258–266.CrossRefPubMedGoogle Scholar
  20. 20.
    Strupp M, Zwergal A, Brandt T. Episodic ataxia type 2. Neurotherapeutics 2007;4: 267–273.CrossRefPubMedGoogle Scholar
  21. 21.
    Heron SE, Scheffer IE, Berkovic SF, Dibbens LM, Mulley JC. Channelopathies in idiopathic epilepsy. Neurotherapeutics 2007;4: 295–304.CrossRefPubMedGoogle Scholar
  22. 22.
    Vemino S. Autoimmune and paraneoplastic channelopathies. Neurotherapeutics 2007;4: 305–314.CrossRefGoogle Scholar
  23. 23.
    Steinlein OK. Genetic mechanisms that underlie epilepsy. Nat Rev Neurosci 2004;5: 400–408.CrossRefPubMedGoogle Scholar
  24. 24.
    Cannon SC. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu Rev Neurosci 2006;29: 387–415.CrossRefPubMedGoogle Scholar
  25. 25.
    Venance SL, Jurkat-Rott K, Lehmann-Horn F, Tawil R. SCN4A-associated hypokalemic periodic paralysis merits a trial of acetazolamide. Neurology 2004;63: 1977.PubMedGoogle Scholar
  26. 26.
    Vicart S, Steinberg D, Founder E, et al. New mutations of SCN4A cause a potassium-sensitive normokalemic periodic paralysis. Neurology 2004;63: 2120–2127.PubMedGoogle Scholar
  27. 27.
    Engel AG. The therapy of congenital myasthenic syndromes. Neurotherapeutics 2007;4: 252–257.CrossRefPubMedGoogle Scholar
  28. 28.
    Jurkat-Rott K, Lehmann-Horn F. Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest 2005; 115: 2000–2009.CrossRefPubMedGoogle Scholar
  29. 29.
    Harper CM, Fukodome T, Engel AG. Treatment of slow-channel congenital myasthenic syndrome with fluoxetine. Neurology 2003; 60: 1710–1713.PubMedGoogle Scholar
  30. 30.
    Herr B, Kamp C, Trimble G, et al. Utility of electronic self-report tool to measure primary outcome in the HYP HOP study. Paper presented at: International Periodic Paralysis Meeting; October 2004; Rochester, NY.Google Scholar
  31. 31.
    Henker B, Whalen CK, Jamner LD, Delfino RJ. Anxiety, affect, and activity in teenagers: monitoring daily life with electronic diaries. J Am Acad Child Adolesc Psychiatry 2002;41: 660–670.CrossRefPubMedGoogle Scholar
  32. 32.
    Kerkenbush NL, Lasome CE. The emerging role of electronic diaries in the management of diabetes mellitus. AACN Clin Issues 2003;14: 371–378.CrossRefPubMedGoogle Scholar
  33. 33.
    Stone AA, Shiffman S, Schwartz JE, Broderick JE, Huffard MR. Patient compliance with paper and electronic diaries. Control Clin Trials 2003;24: 182–199.CrossRefPubMedGoogle Scholar
  34. 34.
    Eich E, Reeves J, Jaeger B, Graff-Radford S. Memory for pain: relation between past and present pain intensity. Pain 1985;23: 375–379.CrossRefPubMedGoogle Scholar
  35. 35.
    Herr BE, Malloy J, Cleland J, Krischer J. Automated tools for data collection and management in clinical research studies of Andersen-Tawil syndrome: improving protocol compliance and data quality. Paper presented at: National Leaders Forum; May 31–June 1, 2006; Rockville, MD.Google Scholar
  36. 36.
    Cleland JC, Logigian EL. Clinical evaluation of memebrane excitability in muscle channel disorders: Potential applications in clinical trials. Neurotherapeutics 2007;4: 205–215.CrossRefPubMedGoogle Scholar
  37. 37.
    Founder E, Arzel M, Stemberg D, et al. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann Neurol 2004;56: 650–661.CrossRefGoogle Scholar
  38. 38.
    Founder E, Viala K, Gervais H, et al. Cold extends electromyography distinction between ion channel mutations causing myotonia. Ann Neurol 2006;60: 356–365.CrossRefGoogle Scholar
  39. 39.
    Strupp M, Kalla R, Dichgans M, Freilinger T, Glasauer S, Brandt T. Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 2004;62: 1623–1625.PubMedGoogle Scholar
  40. 40.
    Lerche H, Jurkat-Rott K, Lehmann-Horn F. Ion channels and epilepsy. Am J Med Genet 2001;106: 146–159.CrossRefPubMedGoogle Scholar
  41. 41.
    Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res 2006;69: 273–294.CrossRefPubMedGoogle Scholar
  42. 42.
    Tricarico D, Barbieri M, Mele A, Carbonara G, Camerino DC. Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats. FASEB J 2004;18: 760–761.PubMedGoogle Scholar
  43. 43.
    Eguchi H, Tsujino A, Kaibara M, et al. Acetazolamide acts directly on the human skeletal muscle chloride channel. Muscle Nerve 2006;34: 292–297.CrossRefPubMedGoogle Scholar

Copyright information

© Springer New York 2007

Authors and Affiliations

  • Shannon L. Venance
    • 1
    • 3
  • Barbara E. Herr
    • 2
  • Robert C. Griggs
    • 2
  1. 1.University of Western OntarioLondonCanada
  2. 2.The Channelopathy ProjectUniversity of Rochester School of Medicine and DentistryRochester
  3. 3.Department of Clinical Neurological SciencesLondon Health Sciences CentreLondonCanada

Personalised recommendations